論文の概要: Neurorehab: An Interface for Rehabilitation
- arxiv url: http://arxiv.org/abs/2301.10957v1
- Date: Thu, 26 Jan 2023 06:28:45 GMT
- ステータス: 処理完了
- システム内更新日: 2023-01-27 14:10:08.107527
- Title: Neurorehab: An Interface for Rehabilitation
- Title(参考訳): Neurorehab: リハビリテーションのためのインターフェース
- Authors: Atul Dhingra, Adeboye A. Adejare Jr, Adam Fendler, Roopeswar
Kommalapati
- Abstract要約: 反復運動は、脳の前頭前部認知制御系の頑健な可塑性のために運動障害のある人を助ける。
我々は,Kinect v2.0 と Unity 3D を用いた没入型ゲームデザインを用いて,脳コンピュータインタフェースの助けを借りて,神経リハビリテーションにおける反復的活動の役割について検討した。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: About 15% of the world population is affected by a disability in some form,
amongst whom only 31% perform the recommended exercises without intervention.
We are working on developing a motivating and effective way to encourage
people. In our work, we leverage the fact that repetitive exercises can help
people with motor disabilities due to the robust plasticity of the pre-frontal
cognitive control system in the brain. We investigate the role of repetitive
activities for neurorehabilitation with the help of a brain computer interface,
formulated using immersive game design with Kinect v2.0 and Unity 3D. We also
introduce a game design paradigm for adaptive learning for the patients.
- Abstract(参考訳): 世界の人口の約15%は何らかの形で障害の影響を受けており、そのうち31%のみが介入なしに推奨運動を行っている。
私たちは、人々を励ますモチベーションと効果的な方法の開発に取り組んでいます。
我々の研究は、反復運動が脳の前頭前部認知制御システムの頑健な可塑性のために運動障害の患者を助けるという事実を活用している。
kinect v2.0とunity 3dによる没入型ゲームデザインを用いて,脳コンピュータインタフェースを用いて神経再生における反復的活動の役割について検討した。
また,患者に対する適応学習のためのゲームデザインパラダイムも導入する。
関連論文リスト
- Socially Interactive Agents for Robotic Neurorehabilitation Training: Conceptualization and Proof-of-concept Study [7.365940126473552]
我々は、神経リハビリテーショントレーニング中にパーソナライズされた院外援助を提供するAIベースのシステムを導入する。
専門職の助けを借りて、想定されたシステムは、個々の患者の独自のリハビリテーション要件を満たすように設計されている。
我々のアプローチは、対話型社会的に認識された仮想エージェントを神経リハビリテーションロボットフレームワークに統合することである。
論文 参考訳(メタデータ) (2024-06-17T19:07:05Z) - Facilitating Self-Guided Mental Health Interventions Through Human-Language Model Interaction: A Case Study of Cognitive Restructuring [8.806947407907137]
人間の言語モデル相互作用が自己指導型メンタルヘルス介入にどのように役立つかを検討する。
我々は、言語モデルを用いて、認知的再構成の様々なステップを通して人々を支援するシステムの設計と評価を行う。
論文 参考訳(メタデータ) (2023-10-24T02:23:34Z) - Ego-perspective enhanced fitness training experience of AR Try to Move
game [0.0]
この研究は、AR Try to Moveゲームと畳み込みニューラルネットワーク(CNN)を提供することを目的としている。
ユーザーは、より有効で便利な遠隔トレーニングを通じて、上肢筋システムを強化するインセンティブを得ている。
論文 参考訳(メタデータ) (2023-09-26T08:34:27Z) - Design, Development, and Evaluation of an Interactive Personalized
Social Robot to Monitor and Coach Post-Stroke Rehabilitation Exercises [68.37238218842089]
パーソナライズされたリハビリテーションのための対話型ソーシャルロボット運動指導システムを開発した。
このシステムは、ニューラルネットワークモデルとルールベースのモデルを統合し、患者のリハビリテーション運動を自動的に監視し、評価する。
我々のシステムは,新たな参加者に適応し,専門家の合意レベルに匹敵する,エクササイズを評価するための平均パフォーマンス0.81を達成できる。
論文 参考訳(メタデータ) (2023-05-12T17:37:04Z) - Force-Aware Interface via Electromyography for Natural VR/AR Interaction [69.1332992637271]
我々はVR/ARにおける自然的および直感的な力入力のための学習ベースのニューラルネットワークを設計する。
我々は,3.3%の平均誤差で指の力量をリアルタイムでデコードし,キャリブレーションの少ない新規ユーザに一般化できることを実証した。
今後のVR/ARにおける、より現実的な物理性に向けた研究を進めるために、我々の研究成果を期待する。
論文 参考訳(メタデータ) (2022-10-03T20:51:25Z) - An Investigation on Non-Invasive Brain-Computer Interfaces: Emotiv Epoc+
Neuroheadset and Its Effectiveness [0.7734726150561089]
人間の脳から直接人間の音声を、Facebook Reality Labとカリフォルニア大学サンフランシスコ校が導入したデジタルスクリーンにデコードする。
そこで我々は,脳-機械インタフェース(BMI)アプローチを用いて,ヒト脳を制御するビジョンプロジェクトについて検討した。
我々は、非侵襲的、挿入可能、低コストのBCIアプローチが、身体麻痺の患者だけでなく、脳を理解するための代替手段の焦点となると想定している。
論文 参考訳(メタデータ) (2022-06-24T05:45:48Z) - Overcoming the Domain Gap in Neural Action Representations [60.47807856873544]
3Dポーズデータは、手動で介入することなく、マルチビュービデオシーケンスから確実に抽出できる。
本稿では,ニューラルアクション表現の符号化を,ニューラルアクションと行動拡張のセットと共に導くために使用することを提案する。
ドメインギャップを減らすために、トレーニングの間、同様の行動をしているように見える動物間で神経と行動のデータを取り替える。
論文 参考訳(メタデータ) (2021-12-02T12:45:46Z) - Backprop-Free Reinforcement Learning with Active Neural Generative
Coding [84.11376568625353]
動的環境におけるエラー(バックプロップ)のバックプロパゲーションを伴わない行動駆動型生成モデルの学習のための計算フレームワークを提案する。
我々は、まばらな報酬でも機能するインテリジェントエージェントを開発し、推論として計画の認知理論からインスピレーションを得ている。
我々のエージェントの堅牢な性能は、神経推論と学習のためのバックプロップフリーアプローチがゴール指向の行動を促進するという有望な証拠を提供する。
論文 参考訳(メタデータ) (2021-07-10T19:02:27Z) - Enabling AI and Robotic Coaches for Physical Rehabilitation Therapy:
Iterative Design and Evaluation with Therapists and Post-Stroke Survivors [66.07833535962762]
人工知能(AI)とロボットコーチは、社会的相互作用を通じてリハビリテーション運動における患者の関与を改善することを約束する。
これまでの研究は、AIやロボットコーチの運動を自動的に監視する可能性を探ったが、デプロイは依然として難しい課題だ。
我々は,AIとロボットコーチが患者の運動をどのように操作し,指導するかに関する詳細な設計仕様を提示する。
論文 参考訳(メタデータ) (2021-06-15T22:06:39Z) - Designing Personalized Interaction of a Socially Assistive Robot for
Stroke Rehabilitation Therapy [64.52563354823711]
社会支援ロボットの研究は、神経学的および筋骨格疾患の患者に対する理学療法セッションを増強し、支援する可能性がある。
本稿では,運動の質を予測するために,患者個別の運動の運動特性を動的に選択できる社会支援ロボットのインタラクティブなアプローチを提案する。
論文 参考訳(メタデータ) (2020-07-13T16:12:05Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。