論文の概要: A Review of Scene Representations for Robot Manipulators
- arxiv url: http://arxiv.org/abs/2301.11275v1
- Date: Thu, 22 Dec 2022 20:32:19 GMT
- ステータス: 処理完了
- システム内更新日: 2023-01-29 13:12:42.456538
- Title: A Review of Scene Representations for Robot Manipulators
- Title(参考訳): ロボットマニピュレータのシーン表現に関する一考察
- Authors: Carter Sifferman
- Abstract要約: 我々は、実世界のセンシングから構築され、下流のタスクを知らせるために使用される表現に焦点を当てる。
シーンの表現は、ロボットの種類、知覚モダリティ、ロボットが行うように設計されたタスクによって大きく異なる。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: For a robot to act intelligently, it needs to sense the world around it.
Increasingly, robots build an internal representation of the world from sensor
readings. This representation can then be used to inform downstream tasks, such
as manipulation, collision avoidance, or human interaction. In practice, scene
representations vary widely depending on the type of robot, the sensing
modality, and the task that the robot is designed to do. This review provides
an overview of the scene representations used for robot manipulators (robot
arms). We focus primarily on representations which are built from real world
sensing and are used to inform some downstream robotics task.
- Abstract(参考訳): ロボットがインテリジェントに行動するためには、周囲の世界を感知する必要がある。
ますますロボットは、センサーによる読み出しから世界の内的表現を作り上げている。
この表現は、操作、衝突回避、ヒューマンインタラクションといった下流のタスクを通知するために使用することができる。
実際には、シーン表現はロボットの種類、センシングモダリティ、ロボットが行うように設計されたタスクによって大きく異なる。
本稿では,ロボットマニピュレータ(ロボットアーム)のシーン表現について概観する。
我々は、主に現実世界のセンシングから構築された表現に焦点を当て、下流のロボティクスのタスクを通知するために使用される。
関連論文リスト
- HuBo-VLM: Unified Vision-Language Model designed for HUman roBOt
interaction tasks [5.057755436092344]
人間のロボットのインタラクションは、人間の指示に従ってロボットを誘導する、エキサイティングなタスクだ。
HuBo-VLMは人間のロボットのインタラクションに関連する知覚課題に取り組むために提案されている。
論文 参考訳(メタデータ) (2023-08-24T03:47:27Z) - Giving Robots a Hand: Learning Generalizable Manipulation with
Eye-in-Hand Human Video Demonstrations [66.47064743686953]
眼内カメラは、視覚に基づくロボット操作において、より優れたサンプル効率と一般化を可能にすることを約束している。
一方、人間がタスクを行うビデオは、ロボット遠隔操作の専門知識を欠いているため、収集コストがずっと安い。
本研究では,広範にラベルのない人間ビデオによるロボット模倣データセットを拡張し,眼球運動ポリシーの一般化を大幅に促進する。
論文 参考訳(メタデータ) (2023-07-12T07:04:53Z) - Knowledge-Driven Robot Program Synthesis from Human VR Demonstrations [16.321053835017942]
バーチャルリアリティ(VR)におけるヒューマンタスクの実演から実行可能なロボット制御プログラムを自動生成するシステムを提案する。
我々は、人間のVRデモを意味論的に解釈するために、常識知識とゲームエンジンに基づく物理を利用する。
ロボットショッピングアシスタントにおける力覚的フェッチ・アンド・プレイスという文脈でのアプローチを実証する。
論文 参考訳(メタデータ) (2023-06-05T09:37:53Z) - Open-World Object Manipulation using Pre-trained Vision-Language Models [72.87306011500084]
ロボットが人からの指示に従うためには、人間の語彙の豊かな意味情報を繋げなければならない。
我々は、事前学習された視覚言語モデルを利用して、オブジェクト識別情報を抽出するシンプルなアプローチを開発する。
実際の移動マニピュレータにおける様々な実験において、MOOはゼロショットを様々な新しいオブジェクトカテゴリや環境に一般化する。
論文 参考訳(メタデータ) (2023-03-02T01:55:10Z) - Zero-Shot Robot Manipulation from Passive Human Videos [59.193076151832145]
我々は,人間の映像からエージェント非依存の行動表現を抽出するフレームワークを開発した。
我々の枠組みは、人間の手の動きを予測することに基づいている。
トレーニングされたモデルゼロショットを物理ロボット操作タスクにデプロイする。
論文 参考訳(メタデータ) (2023-02-03T21:39:52Z) - Aligning Robot and Human Representations [50.070982136315784]
ロボット工学における現在の表現学習アプローチは、表現アライメントの目的がいかにうまく達成されているかの観点から研究されるべきである。
問題を数学的に定義し、その鍵となるデシダータを同定し、この形式主義の中に現在の方法を置く。
論文 参考訳(メタデータ) (2023-02-03T18:59:55Z) - Robots with Different Embodiments Can Express and Influence Carefulness
in Object Manipulation [104.5440430194206]
本研究では,2つのロボットによるコミュニケーション意図による物体操作の知覚について検討する。
ロボットの動きを設計し,物体の搬送時に注意を喚起するか否かを判断した。
論文 参考訳(メタデータ) (2022-08-03T13:26:52Z) - Explain yourself! Effects of Explanations in Human-Robot Interaction [10.389325878657697]
ロボット決定の説明は、ユーザーの知覚に影響を与え、信頼性を正当化し、信頼を高める。
ロボットが人間の知覚に与える影響は、まだ十分に研究されていない。
本研究は、人間とロボットの相互作用を説明する必要性と可能性を示す。
論文 参考訳(メタデータ) (2022-04-09T15:54:27Z) - Synthesis and Execution of Communicative Robotic Movements with
Generative Adversarial Networks [59.098560311521034]
我々は、繊細な物体を操作する際に人間が採用するのと同じキネマティクス変調を2つの異なるロボットプラットフォームに転送する方法に焦点を当てる。
我々は、ロボットのエンドエフェクターが採用する速度プロファイルを、異なる特徴を持つ物体を輸送する際に人間が何をするかに触発されて調整する。
我々は、人体キネマティクスの例を用いて訓練され、それらを一般化し、新しい有意義な速度プロファイルを生成する、新しいジェネレーティブ・アドバイサル・ネットワークアーキテクチャを利用する。
論文 参考訳(メタデータ) (2022-03-29T15:03:05Z) - Intelligent Motion Planning for a Cost-effective Object Follower Mobile
Robotic System with Obstacle Avoidance [0.2062593640149623]
本稿では,ロボットビジョンと深層学習を用いて,必要な直線および角速度を求めるロボットシステムを提案する。
私たちが提案している新しい手法は、任意の種類の照明において、ユニークな色付けされた物体の位置を検出するのに正確である。
論文 参考訳(メタデータ) (2021-09-06T19:19:47Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。