SAME++: A Self-supervised Anatomical eMbeddings Enhanced medical image
registration framework using stable sampling and regularized transformation
- URL: http://arxiv.org/abs/2311.14986v2
- Date: Sun, 25 Feb 2024 11:05:34 GMT
- Title: SAME++: A Self-supervised Anatomical eMbeddings Enhanced medical image
registration framework using stable sampling and regularized transformation
- Authors: Lin Tian, Zi Li, Fengze Liu, Xiaoyu Bai, Jia Ge, Le Lu, Marc
Niethammer, Xianghua Ye, Ke Yan, Daikai Jin
- Abstract summary: In this work, we introduce a fast and accurate method for unsupervised 3D medical image registration building on top of a Self-supervised Anatomical eMbedding algorithm.
We name our approach SAM-Enhanced registration (SAME++), which decomposes image registration into four steps: affine transformation, coarse deformation, deep non-parametric transformation, and instance optimization.
As a complete registration framework, SAME++ markedly outperforms leading methods by $4.2%$ - $8.2%$ in terms of Dice score.
- Score: 19.683682147655496
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Image registration is a fundamental medical image analysis task. Ideally,
registration should focus on aligning semantically corresponding voxels, i.e.,
the same anatomical locations. However, existing methods often optimize
similarity measures computed directly on intensities or on hand-crafted
features, which lack anatomical semantic information. These similarity measures
may lead to sub-optimal solutions where large deformations, complex anatomical
differences, or cross-modality imagery exist. In this work, we introduce a fast
and accurate method for unsupervised 3D medical image registration building on
top of a Self-supervised Anatomical eMbedding (SAM) algorithm, which is capable
of computing dense anatomical correspondences between two images at the voxel
level. We name our approach SAM-Enhanced registration (SAME++), which
decomposes image registration into four steps: affine transformation, coarse
deformation, deep non-parametric transformation, and instance optimization.
Using SAM embeddings, we enhance these steps by finding more coherent
correspondence and providing features with better semantic guidance. We
extensively evaluated SAME++ using more than 50 labeled organs on three
challenging inter-subject registration tasks of different body parts. As a
complete registration framework, SAME++ markedly outperforms leading methods by
$4.2\%$ - $8.2\%$ in terms of Dice score while being orders of magnitude faster
than numerical optimization-based methods. Code is available at
\url{https://github.com/alibaba-damo-academy/same}.
Related papers
- MsMorph: An Unsupervised pyramid learning network for brain image registration [4.000367245594772]
MsMorph is an image registration framework aimed at mimicking the manual process of registering image pairs.
It decodes semantic information at different scales and continuously compen-sates for the predicted deformation field.
The proposed method simulates the manual approach to registration, focusing on different regions of the image pairs and their neighborhoods.
arXiv Detail & Related papers (2024-10-23T19:20:57Z) - Bayesian Unsupervised Disentanglement of Anatomy and Geometry for Deep Groupwise Image Registration [50.62725807357586]
This article presents a general Bayesian learning framework for multi-modal groupwise image registration.
We propose a novel hierarchical variational auto-encoding architecture to realise the inference procedure of the latent variables.
Experiments were conducted to validate the proposed framework, including four different datasets from cardiac, brain, and abdominal medical images.
arXiv Detail & Related papers (2024-01-04T08:46:39Z) - Dual-scale Enhanced and Cross-generative Consistency Learning for Semi-supervised Medical Image Segmentation [49.57907601086494]
Medical image segmentation plays a crucial role in computer-aided diagnosis.
We propose a novel Dual-scale Enhanced and Cross-generative consistency learning framework for semi-supervised medical image (DEC-Seg)
arXiv Detail & Related papers (2023-12-26T12:56:31Z) - 3DSAM-adapter: Holistic adaptation of SAM from 2D to 3D for promptable tumor segmentation [52.699139151447945]
We propose a novel adaptation method for transferring the segment anything model (SAM) from 2D to 3D for promptable medical image segmentation.
Our model can outperform domain state-of-the-art medical image segmentation models on 3 out of 4 tasks, specifically by 8.25%, 29.87%, and 10.11% for kidney tumor, pancreas tumor, colon cancer segmentation, and achieve similar performance for liver tumor segmentation.
arXiv Detail & Related papers (2023-06-23T12:09:52Z) - Primitive Simultaneous Optimization of Similarity Metrics for Image
Registration [11.928304177787604]
We investigate whether simultaneous optimization of registration metrics, here implemented by means of primitive summation, can benefit image registration.
We demonstrate improved registration accuracy in terms of TRE on expert neuroradiologists' landmark annotations.
arXiv Detail & Related papers (2023-04-04T07:43:56Z) - Anatomy-aware and acquisition-agnostic joint registration with SynthMorph [6.017634371712142]
Affine image registration is a cornerstone of medical image analysis.
Deep-learning (DL) methods learn a function that maps an image pair to an output transform.
Most affine methods are agnostic to the anatomy the user wishes to align, meaning the registration will be inaccurate if algorithms consider all structures in the image.
We address these shortcomings with SynthMorph, a fast, symmetric, diffeomorphic, and easy-to-use DL tool for joint affine-deformable registration of any brain image.
arXiv Detail & Related papers (2023-01-26T18:59:33Z) - Attentive Symmetric Autoencoder for Brain MRI Segmentation [56.02577247523737]
We propose a novel Attentive Symmetric Auto-encoder based on Vision Transformer (ViT) for 3D brain MRI segmentation tasks.
In the pre-training stage, the proposed auto-encoder pays more attention to reconstruct the informative patches according to the gradient metrics.
Experimental results show that our proposed attentive symmetric auto-encoder outperforms the state-of-the-art self-supervised learning methods and medical image segmentation models.
arXiv Detail & Related papers (2022-09-19T09:43:19Z) - SAME: Deformable Image Registration based on Self-supervised Anatomical
Embeddings [16.38383865408585]
This work is built on a recent algorithm SAM, which is capable of computing dense anatomical/semantic correspondences between two images at the pixel level.
Our method is named SAME, which breaks down image registration into three steps: affine transformation, coarse deformation, and deep deformable registration.
arXiv Detail & Related papers (2021-09-23T18:03:11Z) - Automatic size and pose homogenization with spatial transformer network
to improve and accelerate pediatric segmentation [51.916106055115755]
We propose a new CNN architecture that is pose and scale invariant thanks to the use of Spatial Transformer Network (STN)
Our architecture is composed of three sequential modules that are estimated together during training.
We test the proposed method in kidney and renal tumor segmentation on abdominal pediatric CT scanners.
arXiv Detail & Related papers (2021-07-06T14:50:03Z) - Flexible Bayesian Modelling for Nonlinear Image Registration [0.3914676152740142]
We describe a diffeomorphic registration algorithm that allows groups of images to be accurately aligned to a common space.
The idea is to perform inference in a probabilistic graphical model that accounts for variability in both shape and appearance.
The model is evaluated at inter-subject registration of 3D human brain scans.
arXiv Detail & Related papers (2020-06-03T15:33:14Z) - Learning Deformable Image Registration from Optimization: Perspective,
Modules, Bilevel Training and Beyond [62.730497582218284]
We develop a new deep learning based framework to optimize a diffeomorphic model via multi-scale propagation.
We conduct two groups of image registration experiments on 3D volume datasets including image-to-atlas registration on brain MRI data and image-to-image registration on liver CT data.
arXiv Detail & Related papers (2020-04-30T03:23:45Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.