論文の概要: Optimally-Weighted Estimators of the Maximum Mean Discrepancy for
Likelihood-Free Inference
- arxiv url: http://arxiv.org/abs/2301.11674v1
- Date: Fri, 27 Jan 2023 12:13:54 GMT
- ステータス: 処理完了
- システム内更新日: 2023-01-30 15:45:50.200146
- Title: Optimally-Weighted Estimators of the Maximum Mean Discrepancy for
Likelihood-Free Inference
- Title(参考訳): 自由度推定のための最大平均差の最適重み付け推定器
- Authors: Ayush Bharti, Masha Naslidnyk, Oscar Key, Samuel Kaski,
Fran\c{c}ois-Xavier Briol
- Abstract要約: Likelihood-free推論手法は典型的にはシミュレーションデータと実データの間の距離を利用する。
最大平均誤差 (MMD) は、一般にルート$m$で推定され、$m$はシミュレーション標本の数である。
サンプルの複雑さを大幅に改善したMDDの新しい推定器を提案する。
- 参考スコア(独自算出の注目度): 12.157511906467146
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Likelihood-free inference methods typically make use of a distance between
simulated and real data. A common example is the maximum mean discrepancy
(MMD), which has previously been used for approximate Bayesian computation,
minimum distance estimation, generalised Bayesian inference, and within the
nonparametric learning framework. The MMD is commonly estimated at a root-$m$
rate, where $m$ is the number of simulated samples. This can lead to
significant computational challenges since a large $m$ is required to obtain an
accurate estimate, which is crucial for parameter estimation. In this paper, we
propose a novel estimator for the MMD with significantly improved sample
complexity. The estimator is particularly well suited for computationally
expensive smooth simulators with low- to mid-dimensional inputs. This claim is
supported through both theoretical results and an extensive simulation study on
benchmark simulators.
- Abstract(参考訳): Likelihood-free推論手法は典型的にはシミュレーションデータと実データの間の距離を利用する。
一般的な例として、最大平均誤差(MMD)があり、これはベイズ近似計算、最小距離推定、一般化ベイズ推論、および非パラメトリック学習フレームワーク内で使われている。
MMDは一般にルート$m$と見積もられており、$m$は模擬サンプルの数である。
これは、正確な推定を得るために大きな$m$を必要とするため、重要な計算上の課題につながる可能性がある。
本稿では,サンプルの複雑さを大幅に改善したMDDの新しい推定器を提案する。
この推定器は、低次元から中次元の入力を持つ計算コストの高い滑らかなシミュレータに特に適している。
この主張は、理論的な結果とベンチマークシミュレータに関する広範なシミュレーション研究の両方を通して支持されている。
関連論文リスト
- Cosmological Analysis with Calibrated Neural Quantile Estimation and Approximate Simulators [0.0]
我々は,多数の近似シミュレーションをトレーニングに利用し,少数の高忠実度シミュレーションをキャリブレーションに利用した新しいシミュレーションベース推論(SBI)手法を提案する。
概念の証明として、2次元暗黒物質密度写像から、z=0$で$k_rm maxsim1.5,h$/Mpcまでの距離で宇宙的パラメータを推定できることが示される。
キャリブレーション後部は、$sim104$ expensive Particle-Particle (PP) シミュレーションの直接トレーニングにより得られたものとよく一致するが、計算コストのごく一部で一致する。
論文 参考訳(メタデータ) (2024-11-22T05:53:46Z) - Diffusion posterior sampling for simulation-based inference in tall data settings [53.17563688225137]
シミュレーションベース推論(SBI)は、入力パラメータを所定の観測に関連付ける後部分布を近似することができる。
本研究では、モデルのパラメータをより正確に推測するために、複数の観測値が利用できる、背の高いデータ拡張について考察する。
提案手法を,最近提案した各種数値実験の競合手法と比較し,数値安定性と計算コストの観点から,その優位性を実証した。
論文 参考訳(メタデータ) (2024-04-11T09:23:36Z) - Amortized Bayesian Decision Making for simulation-based models [11.375835331641548]
シミュレータ上でベイズ決定を行う方法に関する問題に対処する。
本手法は,シミュレーションデータ上にニューラルネットワークを学習し,予測コストを予測する。
次に,医療神経科学における実世界のシミュレーターにおける最適な行動を推測するために,本手法を適用した。
論文 参考訳(メタデータ) (2023-12-05T11:29:54Z) - Sparse high-dimensional linear regression with a partitioned empirical
Bayes ECM algorithm [62.997667081978825]
疎高次元線形回帰に対する計算効率が高く強力なベイズ的手法を提案する。
パラメータに関する最小の事前仮定は、プラグイン経験的ベイズ推定(英語版)を用いて用いられる。
提案手法はRパッケージプローブに実装されている。
論文 参考訳(メタデータ) (2022-09-16T19:15:50Z) - Robust Bayesian Inference for Simulator-based Models via the MMD
Posterior Bootstrap [13.448658162594604]
後部ブートストラップと最大平均誤差推定器に基づく新しいアルゴリズムを提案する。
これにより、強い性質を持つ高パラレライズ可能なベイズ推論アルゴリズムが導かれる。
このアプローチは、g-and-k分布やトグル・スウィッチモデルなど、さまざまな例に基づいて評価される。
論文 参考訳(メタデータ) (2022-02-09T22:12:19Z) - Inverting brain grey matter models with likelihood-free inference: a
tool for trustable cytoarchitecture measurements [62.997667081978825]
脳の灰白質細胞構造の特徴は、体密度と体積に定量的に敏感であり、dMRIでは未解決の課題である。
我々は新しいフォワードモデル、特に新しい方程式系を提案し、比較的スパースなb殻を必要とする。
次に,提案手法を逆転させるため,確率自由推論 (LFI) として知られるベイズ解析から最新のツールを適用した。
論文 参考訳(メタデータ) (2021-11-15T09:08:27Z) - Learning to Estimate Without Bias [57.82628598276623]
ガウスの定理は、重み付き最小二乗推定器は線形モデルにおける線形最小分散アンバイアスド推定(MVUE)であると述べている。
本稿では、バイアス制約のあるディープラーニングを用いて、この結果を非線形設定に拡張する第一歩を踏み出す。
BCEの第二の動機は、同じ未知の複数の推定値が平均化されてパフォーマンスが向上するアプリケーションにおいてである。
論文 参考訳(メタデータ) (2021-10-24T10:23:51Z) - $\gamma$-ABC: Outlier-Robust Approximate Bayesian Computation Based on a
Robust Divergence Estimator [95.71091446753414]
最寄りの$gamma$-divergence推定器をデータ差分尺度として用いることを提案する。
本手法は既存の不一致対策よりも高いロバスト性を実現する。
論文 参考訳(メタデータ) (2020-06-13T06:09:27Z) - Machine learning for causal inference: on the use of cross-fit
estimators [77.34726150561087]
より優れた統計特性を得るために、二重ローバストなクロスフィット推定器が提案されている。
平均因果効果(ACE)に対する複数の推定器の性能評価のためのシミュレーション研究を行った。
機械学習で使用する場合、二重確率のクロスフィット推定器は、バイアス、分散、信頼区間のカバレッジで他のすべての推定器よりも大幅に優れていた。
論文 参考訳(メタデータ) (2020-04-21T23:09:55Z) - A Deep Learning Algorithm for High-Dimensional Exploratory Item Factor
Analysis [0.0]
探索項目因子分析(IFA)のための深層学習に基づくVIアルゴリズムについて検討する。
提案手法は、探索型IFAのための重要重み付きオートエンコーダ(IWAE)と呼ばれる深層人工ニューラルネットワークモデルを適用する。
IWAEは標本サイズやIWサンプル数の増加に伴って,より正確な推定値が得られることを示す。
論文 参考訳(メタデータ) (2020-01-22T03:02:34Z) - Efficient Debiased Evidence Estimation by Multilevel Monte Carlo
Sampling [0.0]
ベイズ推論に基づくマルチレベルモンテカルロ法(MLMC)の最適化手法を提案する。
計算結果から,従来の推定値と比較すると,かなりの計算量の削減が確認できた。
論文 参考訳(メタデータ) (2020-01-14T09:14:24Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。