論文の概要: $\gamma$-ABC: Outlier-Robust Approximate Bayesian Computation Based on a
Robust Divergence Estimator
- arxiv url: http://arxiv.org/abs/2006.07571v3
- Date: Fri, 5 Mar 2021 05:16:43 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-21 20:49:50.557441
- Title: $\gamma$-ABC: Outlier-Robust Approximate Bayesian Computation Based on a
Robust Divergence Estimator
- Title(参考訳): $\gamma$-ABC: Outlier-Robust Approbusmate Bayesian Computation based on a Robust Divergence Estimator
- Authors: Masahiro Fujisawa, Takeshi Teshima, Issei Sato, Masashi Sugiyama
- Abstract要約: 最寄りの$gamma$-divergence推定器をデータ差分尺度として用いることを提案する。
本手法は既存の不一致対策よりも高いロバスト性を実現する。
- 参考スコア(独自算出の注目度): 95.71091446753414
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Approximate Bayesian computation (ABC) is a likelihood-free inference method
that has been employed in various applications. However, ABC can be sensitive
to outliers if a data discrepancy measure is chosen inappropriately. In this
paper, we propose to use a nearest-neighbor-based $\gamma$-divergence estimator
as a data discrepancy measure. We show that our estimator possesses a suitable
theoretical robustness property called the redescending property. In addition,
our estimator enjoys various desirable properties such as high flexibility,
asymptotic unbiasedness, almost sure convergence, and linear-time computational
complexity. Through experiments, we demonstrate that our method achieves
significantly higher robustness than existing discrepancy measures.
- Abstract(参考訳): 近似ベイズ計算(英: approximation bayesian computation、abc)は、様々な応用で用いられる確率自由推論法である。
しかし、データ不一致尺度が不適切に選択された場合、ABCは外れ値に敏感である。
本稿では,最寄りの$\gamma$-divergence推定器をデータ差分尺度として用いることを提案する。
推定器は再帰性と呼ばれる適切な理論的堅牢性を有することを示す。
さらに, この推定器は, 高柔軟性, 漸近的不偏性, ほぼ確実に収束し, 線形時間計算複雑性など, 様々な望ましい特性を享受している。
実験により,本手法は既存の不一致対策よりもかなり高いロバスト性を実現することを実証した。
関連論文リスト
- An Asymptotically Optimal Coordinate Descent Algorithm for Learning Bayesian Networks from Gaussian Models [6.54203362045253]
線形ガウス構造方程式モデルに基づいて連続観測データからネットワークを学習する問題について検討する。
本稿では,$ell$penalized max chanceの最適目標値に収束する新しい座標降下アルゴリズムを提案する。
論文 参考訳(メタデータ) (2024-08-21T20:18:03Z) - A Mean Field Approach to Empirical Bayes Estimation in High-dimensional
Linear Regression [8.345523969593492]
高次元線形回帰における経験的ベイズ推定について検討する。
もともとCarbonetto and Stephens (2012) と Kim et al. (2022) で導入された変分経験ベイズアプローチを採用する。
これは、空間性のない高次元回帰設定において、最初の厳密な経験的ベイズ法を提供する。
論文 参考訳(メタデータ) (2023-09-28T20:51:40Z) - Robust computation of optimal transport by $\beta$-potential
regularization [79.24513412588745]
最適輸送(OT)は、確率分布間の差を測定する機械学習分野で広く使われているツールである。
我々は、いわゆる$beta$-divergenceに付随するベータポテンシャル項でOTを正規化することを提案する。
提案アルゴリズムで計算した輸送行列は,外乱が存在する場合でも確率分布を頑健に推定するのに役立つことを実験的に実証した。
論文 参考訳(メタデータ) (2022-12-26T18:37:28Z) - Statistical, Robustness, and Computational Guarantees for Sliced
Wasserstein Distances [18.9717974398864]
スライスされたワッサーシュタイン距離は古典的なワッサーシュタイン距離の性質を保ちながら、高次元での計算と推定によりスケーラブルである。
このスケーラビリティを, (i) 経験的収束率, (ii) データの汚染に対する堅牢性, (iii) 効率的な計算方法という3つの重要な側面から定量化する。
論文 参考訳(メタデータ) (2022-10-17T15:04:51Z) - Optimal variance-reduced stochastic approximation in Banach spaces [114.8734960258221]
可分バナッハ空間上で定義された収縮作用素の定点を推定する問題について検討する。
演算子欠陥と推定誤差の両方に対して漸近的でない境界を確立する。
論文 参考訳(メタデータ) (2022-01-21T02:46:57Z) - Learning to Estimate Without Bias [57.82628598276623]
ガウスの定理は、重み付き最小二乗推定器は線形モデルにおける線形最小分散アンバイアスド推定(MVUE)であると述べている。
本稿では、バイアス制約のあるディープラーニングを用いて、この結果を非線形設定に拡張する第一歩を踏み出す。
BCEの第二の動機は、同じ未知の複数の推定値が平均化されてパフォーマンスが向上するアプリケーションにおいてである。
論文 参考訳(メタデータ) (2021-10-24T10:23:51Z) - Heavy-tailed Streaming Statistical Estimation [58.70341336199497]
ストリーミング$p$のサンプルから重み付き統計推定の課題を考察する。
そこで我々は,傾きの雑音に対して,よりニュアンスな条件下での傾きの傾きの低下を設計し,より詳細な解析を行う。
論文 参考訳(メタデータ) (2021-08-25T21:30:27Z) - Large-Scale Methods for Distributionally Robust Optimization [53.98643772533416]
我々のアルゴリズムは、トレーニングセットのサイズとパラメータの数によらず、多くの評価勾配を必要とすることを証明している。
MNIST と ImageNet の実験により,本手法の 9-36 倍の効率性を持つアルゴリズムの理論的スケーリングが確認された。
論文 参考訳(メタデータ) (2020-10-12T17:41:44Z) - $\beta$-Cores: Robust Large-Scale Bayesian Data Summarization in the
Presence of Outliers [14.918826474979587]
古典的ベイズ推定の質は、観測結果が推定データ生成モデルに適合するかどうかに大きく依存する。
本稿では,大容量データセットに同時スケール可能な変分推論手法を提案する。
多様なシミュレーションおよび実データ、および様々な統計モデルにおいて、我々のアプローチの適用性について説明する。
論文 参考訳(メタデータ) (2020-08-31T13:47:12Z) - Scalable Distributed Approximation of Internal Measures for Clustering
Evaluation [5.144809478361603]
クラスタリング評価のための内部測度はシルエット係数であり、計算には2つの距離計算が必要である。
本稿では,任意の距離に基づいてクラスタリングの評価を行うための厳密な近似を計算した最初のスケーラブルアルゴリズムを提案する。
また,このアルゴリズムは凝集や分離などのクラスタリング品質の他の内部指標の厳密な近似に適応可能であることも証明した。
論文 参考訳(メタデータ) (2020-03-03T10:28:14Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。