論文の概要: Cybersecurity Threat Hunting and Vulnerability Analysis Using a Neo4j Graph Database of Open Source Intelligence
- arxiv url: http://arxiv.org/abs/2301.12013v2
- Date: Mon, 07 Oct 2024 21:15:40 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-10 14:24:56.683347
- Title: Cybersecurity Threat Hunting and Vulnerability Analysis Using a Neo4j Graph Database of Open Source Intelligence
- Title(参考訳): オープンソースインテリジェンスのNeo4jグラフデータベースを用いたサイバーセキュリティの脅威追跡と脆弱性解析
- Authors: Elijah Pelofske, Lorie M. Liebrock, Vincent Urias,
- Abstract要約: 本稿では,オープンソースのインテリジェンステキストと他の情報との共有接続によって形成されるNeo4jグラフデータベースを構築するシステムを提案する。
これらの接続は、妥協の可能性のある指標(IPアドレス、ドメイン、ハッシュ、メールアドレス、電話番号など)と、既知のエクスプロイトや技術に関する情報で構成されている。
グラフデータベースには,悪用された既知のCVEへの接続,既知の悪意のあるIPアドレス,マルウェアのハッシュシグネチャという,興味深いコネクションの具体例が3つある。
- 参考スコア(独自算出の注目度): 0.8192907805418583
- License:
- Abstract: Open source intelligence is a powerful tool for cybersecurity analysts to gather information both for analysis of discovered vulnerabilities and for detecting novel cybersecurity threats and exploits. However the scale of information that is relevant for information security on the internet is always increasing, and is intractable for analysts to parse comprehensively. Therefore methods of condensing the available open source intelligence, and automatically developing connections between disparate sources of information, is incredibly valuable. In this research, we present a system which constructs a Neo4j graph database formed by shared connections between open source intelligence text including blogs, cybersecurity bulletins, news sites, antivirus scans, social media posts (e.g., Reddit and Twitter), and threat reports. These connections are comprised of possible indicators of compromise (e.g., IP addresses, domains, hashes, email addresses, phone numbers), information on known exploits and techniques (e.g., CVEs and MITRE ATT&CK Technique ID's), and potential sources of information on cybersecurity exploits such as twitter usernames. The construction of the database of potential IoCs is detailed, including the addition of machine learning and metadata which can be used for filtering of the data for a specific domain (for example a specific natural language) when needed. Examples of utilizing the graph database for querying connections between known malicious IoCs and open source intelligence documents, including threat reports, are shown. We show three specific examples of interesting connections found in the graph database; the connections to a known exploited CVE, a known malicious IP address, and a malware hash signature.
- Abstract(参考訳): オープンソースのインテリジェンスは、発見された脆弱性の分析と、新たなサイバーセキュリティの脅威やエクスプロイトを検出するために、サイバーセキュリティアナリストが情報を収集する強力なツールである。
しかし、インターネット上の情報セキュリティに関連する情報の規模は常に増加しており、アナリストが包括的に解析することは困難である。
したがって、利用可能なオープンソースインテリジェンスを凝縮し、異なる情報ソース間の接続を自動で開発する方法は、非常に貴重である。
本研究では,ブログやサイバーセキュリティの掲示板,ニュースサイト,アンチウイルススキャン,ソーシャルメディア投稿(RedditやTwitterなど),脅威レポートなど,オープンソースのインテリジェンステキスト間の共有接続によって形成されるNeo4jグラフデータベースを構築するシステムを提案する。
これらの接続は、妥協の可能性のある指標(IPアドレス、ドメイン、ハッシュ、メールアドレス、電話番号)、既知のエクスプロイトとテクニックに関する情報(例えば、CVEやMITRE ATT&CK Technique ID)、およびtwitterユーザ名などのサイバーセキュリティエクスプロイトに関する潜在的な情報源で構成されている。
潜在的なIoCのデータベースの構築には、機械学習とメタデータの追加が含まれており、必要に応じて特定のドメイン(例えば、特定の自然言語)のデータフィルタリングに使用できる。
既知の悪意のあるIoCと、脅威レポートを含むオープンソースのインテリジェンスドキュメント間の接続を問い合わせるためのグラフデータベースの利用例を示す。
グラフデータベースには,悪用された既知のCVEへの接続,既知の悪意のあるIPアドレス,マルウェアのハッシュシグネチャという,興味深いコネクションの具体例が3つある。
関連論文リスト
- CTINEXUS: Leveraging Optimized LLM In-Context Learning for Constructing Cybersecurity Knowledge Graphs Under Data Scarcity [49.657358248788945]
サイバー脅威インテリジェンス(CTI)レポートのテキスト記述は、サイバー脅威に関する豊富な知識源である。
現在のCTI抽出法は柔軟性と一般化性に欠けており、しばしば不正確で不完全な知識抽出をもたらす。
CTINexusは,大規模言語モデルのテキスト内学習(ICL)を最適化した新しいフレームワークである。
論文 参考訳(メタデータ) (2024-10-28T14:18:32Z) - KGV: Integrating Large Language Models with Knowledge Graphs for Cyber Threat Intelligence Credibility Assessment [38.312774244521]
本稿では,CTI(Cyber Threat Intelligence)品質評価フレームワークの知識グラフに基づく検証手法を提案する。
提案手法では,検証対象のOSCTIキークレームを自動的に抽出するLarge Language Models (LLM)を導入している。
研究分野のギャップを埋めるために、異種情報源からの脅威情報評価のための最初のデータセットを作成し、公開しました。
論文 参考訳(メタデータ) (2024-08-15T11:32:46Z) - "Glue pizza and eat rocks" -- Exploiting Vulnerabilities in Retrieval-Augmented Generative Models [74.05368440735468]
Retrieval-Augmented Generative (RAG)モデルにより大規模言語モデル(LLM)が強化される
本稿では,これらの知識基盤の開放性を敵が活用できるセキュリティ上の脅威を示す。
論文 参考訳(メタデータ) (2024-06-26T05:36:23Z) - Privacy-Preserving Graph Machine Learning from Data to Computation: A
Survey [67.7834898542701]
我々は,グラフ機械学習のプライバシ保護手法の見直しに重点を置いている。
まずプライバシ保護グラフデータを生成する方法を検討する。
次に,プライバシ保護情報を送信する方法について述べる。
論文 参考訳(メタデータ) (2023-07-10T04:30:23Z) - Graph Mining for Cybersecurity: A Survey [61.505995908021525]
マルウェア、スパム、侵入などのサイバー攻撃の爆発的な増加は、社会に深刻な影響をもたらした。
従来の機械学習(ML)ベースの手法は、サイバー脅威の検出に広く用いられているが、現実のサイバーエンティティ間の相関をモデル化することはほとんどない。
グラフマイニング技術の普及に伴い、サイバーエンティティ間の相関を捉え、高いパフォーマンスを達成するために、多くの研究者がこれらの手法を調査した。
論文 参考訳(メタデータ) (2023-04-02T08:43:03Z) - Exploring the Limits of Transfer Learning with Unified Model in the
Cybersecurity Domain [17.225973170682604]
生成型マルチタスクモデル Unified Text-to-Text Cybersecurity (UTS) を導入する。
UTSはマルウェアレポート、フィッシングサイトURL、プログラミングコード構造、ソーシャルメディアデータ、ブログ、ニュース記事、フォーラムの投稿で訓練されている。
UTSはいくつかのサイバーセキュリティデータセットの性能を改善している。
論文 参考訳(メタデータ) (2023-02-20T22:21:26Z) - ThreatKG: An AI-Powered System for Automated Open-Source Cyber Threat Intelligence Gathering and Management [65.0114141380651]
ThreatKGはOSCTIの収集と管理のための自動化システムである。
複数のソースから多数のOSCTIレポートを効率的に収集する。
さまざまな脅威エンティティに関する高品質な知識を抽出するために、AIベースの専門技術を使用する。
論文 参考訳(メタデータ) (2022-12-20T16:13:59Z) - Recognizing and Extracting Cybersecurtity-relevant Entities from Text [1.7499351967216343]
サイバー脅威インテリジェンス(Cyber Threat Intelligence、CTI)は、脅威ベクトル、脆弱性、攻撃を記述した情報である。
CTIはしばしば、サイバーセキュリティ知識グラフ(CKG)のようなAIベースのサイバー防衛システムのトレーニングデータとして使用される。
論文 参考訳(メタデータ) (2022-08-02T18:44:06Z) - Generating Cyber Threat Intelligence to Discover Potential Security
Threats Using Classification and Topic Modeling [6.0897744845912865]
サイバー脅威インテリジェンス(CTI)は、能動的かつ堅牢なメカニズムの1つとして表現されている。
我々のゴールは、異なる教師なしおよび教師なしの学習技術を用いて、ハッカーフォーラムから関連するCTIを特定し、探索することである。
論文 参考訳(メタデータ) (2021-08-16T02:30:29Z) - A System for Automated Open-Source Threat Intelligence Gathering and
Management [53.65687495231605]
SecurityKGはOSCTIの収集と管理を自動化するシステムである。
AIとNLP技術を組み合わせて、脅威行動に関する高忠実な知識を抽出する。
論文 参考訳(メタデータ) (2021-01-19T18:31:35Z) - MALOnt: An Ontology for Malware Threat Intelligence [19.57441168490977]
マルウェアの脅威情報により、マルウェア、脅威アクター、およびそれらの戦術に関する詳細な情報が明らかにされる。
MALOntは構造化された情報抽出と知識グラフ生成を可能にする。
論文 参考訳(メタデータ) (2020-06-20T00:25:07Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。