論文の概要: Dynamic Point Cloud Geometry Compression Using Multiscale Inter
Conditional Coding
- arxiv url: http://arxiv.org/abs/2301.12165v1
- Date: Sat, 28 Jan 2023 11:34:06 GMT
- ステータス: 翻訳完了
- システム内更新日: 2023-01-31 18:36:42.367411
- Title: Dynamic Point Cloud Geometry Compression Using Multiscale Inter
Conditional Coding
- Title(参考訳): マルチスケール条件間符号化による動的点クラウド幾何圧縮
- Authors: Jianqiang Wang, Dandan Ding, Hao Chen, Zhan Ma
- Abstract要約: この研究は、Point Cloud Geometry Compression (PCGC)のために開発されたMultiscale Sparse Representation (MSR)フレームワークを拡張し、動的PCGCをサポートする。
先行するポイント・クラウド・ジオメトリ(PCG)フレームの再構築は、段階的にダウンスケール化され、マルチスケールの時間的前兆が生成される。
- 参考スコア(独自算出の注目度): 27.013814232906817
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This work extends the Multiscale Sparse Representation (MSR) framework
developed for static Point Cloud Geometry Compression (PCGC) to support the
dynamic PCGC through the use of multiscale inter conditional coding. To this
end, the reconstruction of the preceding Point Cloud Geometry (PCG) frame is
progressively downscaled to generate multiscale temporal priors which are then
scale-wise transferred and integrated with lower-scale spatial priors from the
same frame to form the contextual information to improve occupancy probability
approximation when processing the current PCG frame from one scale to another.
Following the Common Test Conditions (CTC) defined in the standardization
committee, the proposed method presents State-Of-The-Art (SOTA) compression
performance, yielding 78% lossy BD-Rate gain to the latest standard-compliant
V-PCC and 45% lossless bitrate reduction to the latest G-PCC. Even for
recently-emerged learning-based solutions, our method still shows significant
performance gains.
- Abstract(参考訳): この研究は、静的ポイントクラウド幾何圧縮(PCGC)のために開発されたマルチスケールスパース表現(MSR)フレームワークを拡張し、マルチスケールインターコンディショナルコーディングを用いて動的PCGCをサポートする。
この目的のために、先行するポイントクラウド幾何(PCG)フレームの再構築を段階的にダウンスケールし、その後、スケール的に転送され、同じフレームから低スケールの空間先行と統合され、コンテキスト情報を形成し、現在のPCGフレームをあるスケールから別のスケールに処理する際の占有確率近似を改善する。
標準化委員会で定義された共通テスト条件 (ctc) に従って, 提案手法は最先端の圧縮性能を示し, 標準に準拠したv-pccでは78%, 最新のg-pccでは45%のロスレスビットレート削減を実現する。
近年の学習ベースソリューションにおいても,本手法は依然として大きな性能向上を示す。
関連論文リスト
- PCE-GAN: A Generative Adversarial Network for Point Cloud Attribute Quality Enhancement based on Optimal Transport [56.56430888985025]
点雲品質向上のための生成逆ネットワーク(PCE-GAN)を提案する。
ジェネレータは、局所特徴抽出(LFE)ユニット、大域空間相関(GSC)ユニット、特徴圧縮ユニットからなる。
判別器は、強化点雲と原点雲の確率分布のずれを計算し、ジェネレータを誘導して高品質な再構成を実現する。
論文 参考訳(メタデータ) (2025-02-26T07:34:33Z) - Deep-JGAC: End-to-End Deep Joint Geometry and Attribute Compression for Dense Colored Point Clouds [32.891169081810574]
本稿では,エンドツーエンドのDeep Joint Geometry and Attribute Point Cloud Compressionフレームワークを提案する。
幾何と属性の相関を利用して高い圧縮効率を向上する。
提案されたDeep-JGACは平均82.96%、36.46%、41.72%、31.16%のビットレート削減を達成した。
論文 参考訳(メタデータ) (2025-02-25T08:01:57Z) - Hierarchical Semantic Compression for Consistent Image Semantic Restoration [62.97519327310638]
生成モデルから固有意味空間内で純粋に機能する新しい階層意味圧縮(HSC)フレームワークを提案する。
実験の結果,提案したHSCフレームワークは人間の視力に対する主観的品質と一貫性に関する最先端の性能を実現することが示された。
論文 参考訳(メタデータ) (2025-02-24T03:20:44Z) - CALLIC: Content Adaptive Learning for Lossless Image Compression [64.47244912937204]
CALLICは、学習したロスレス画像圧縮のための新しい最先端(SOTA)を設定する。
本稿では,畳み込みゲーティング操作を利用したコンテンツ認識型自己回帰自己保持機構を提案する。
エンコーディング中、低ランク行列を用いて深度の畳み込みを含む事前学習層を分解し、レート誘導プログレッシブファインタニング(RPFT)による画像検査にインクリメンタルウェイトを適応させる。
推定エントロピーにより下位順にソートされたパッチを徐々に増加させたRPFTファインチューン,学習過程の最適化,適応時間の短縮を実現した。
論文 参考訳(メタデータ) (2024-12-23T10:41:18Z) - Rate-Distortion Optimized Skip Coding of Region Adaptive Hierarchical Transform Coefficients for MPEG G-PCC [13.122745400640305]
3次元(3D)点雲は3Dオブジェクトやシーンを表現するためにますます人気が高まっている。
この課題に対処するため、Moving Picture Experts Groupは、GeometryベースのPoint Cloud Compression(G-PCC)標準を積極的に開発している。
RAHTの適応スキップ手法を提案し,最後の数層の残余を符号化するか否かを適応的に決定する。
論文 参考訳(メタデータ) (2024-12-07T07:43:44Z) - Rendering-Oriented 3D Point Cloud Attribute Compression using Sparse Tensor-based Transformer [52.40992954884257]
3D視覚化技術は、私たちがデジタルコンテンツと対話する方法を根本的に変えてきた。
ポイントクラウドの大規模データサイズは、データ圧縮において大きな課題を呈している。
そこで我々はPCACと差別化可能なレンダリングをシームレスに統合するエンドツーエンドのディープラーニングフレームワークを提案する。
論文 参考訳(メタデータ) (2024-11-12T16:12:51Z) - Hierarchical Prior-based Super Resolution for Point Cloud Geometry
Compression [39.052583172727324]
幾何学に基づくポイントクラウド圧縮(G-PCC)は、ポイントクラウドを圧縮するために移動画像専門家グループによって開発された。
本稿では,点雲幾何学的圧縮のための階層的事前分解能超解法を提案する。
論文 参考訳(メタデータ) (2024-02-17T11:15:38Z) - Geometric Prior Based Deep Human Point Cloud Geometry Compression [67.49785946369055]
我々は、点雲の幾何学的冗長性除去に先立って、人間の幾何学的手法を利用する。
高分解能な人点雲を幾何学的先行と構造的偏差の組み合わせとして考えることができる。
提案フレームワークは,既存の学習ベースポイントクラウド圧縮手法を用いて,プレイ・アンド・プラグ方式で動作可能である。
論文 参考訳(メタデータ) (2023-05-02T10:35:20Z) - Cross Modal Compression: Towards Human-comprehensible Semantic
Compression [73.89616626853913]
クロスモーダル圧縮は、視覚データのためのセマンティック圧縮フレームワークである。
提案したCMCは,超高圧縮比で再現性の向上が期待できることを示す。
論文 参考訳(メタデータ) (2022-09-06T15:31:11Z) - Inter-Frame Compression for Dynamic Point Cloud Geometry Coding [14.79613731546357]
本稿では,従来のフレームを用いて,現在のフレームの潜在表現を予測する圧縮手法を提案する。
提案するネットワークは,階層型マルチスケール3次元特徴学習による畳み込みを利用して,現在のフレームを符号化する。
提案手法は, G-PCCv20 Octreeに対して88%以上のBD-Rate (Bjontegaard Delta Rate)削減を実現する。
論文 参考訳(メタデータ) (2022-07-25T22:17:19Z) - Learned Video Compression via Heterogeneous Deformable Compensation
Network [78.72508633457392]
不安定な圧縮性能の問題に対処するために,不均一変形補償戦略(HDCVC)を用いた学習ビデオ圧縮フレームワークを提案する。
より具体的には、提案アルゴリズムは隣接する2つのフレームから特徴を抽出し、コンテンツ近傍の不均一な変形(HetDeform)カーネルオフセットを推定する。
実験結果から,HDCVCは最近の最先端の学習ビデオ圧縮手法よりも優れた性能を示した。
論文 参考訳(メタデータ) (2022-07-11T02:31:31Z) - Point Cloud Compression with Sibling Context and Surface Priors [47.96018990521301]
大規模クラウド圧縮のための新しいオクツリーベースのマルチレベルフレームワークを提案する。
本稿では,オクツリーの階層的依存性を探索する新しいエントロピーモデルを提案する。
表面をボクセルベースの幾何認識モジュールで局所的に整合させ,エントロピー符号化における幾何学的先行情報を提供する。
論文 参考訳(メタデータ) (2022-05-02T09:13:26Z) - Dynamic Point Cloud Compression with Cross-Sectional Approach [10.850101961203748]
MPEGはV-PCCとして知られるビデオベースのPoint Cloud Compression標準を確定した。
提案手法は,新しい断面法を用いて,これらの制約に対処する。
標準ビデオシーケンスを用いた実験結果から,幾何学的およびテクスチャ的データの両方において,提案手法がより良い圧縮を実現することを示す。
論文 参考訳(メタデータ) (2022-04-25T02:58:18Z) - Communication-Efficient Federated Learning via Quantized Compressed
Sensing [82.10695943017907]
提案フレームワークは,無線機器の勾配圧縮とパラメータサーバの勾配再構成からなる。
勾配スペーシフィケーションと量子化により、我々の戦略は1ビット勾配圧縮よりも高い圧縮比を達成することができる。
圧縮を行わない場合とほぼ同じ性能を実現できることを示す。
論文 参考訳(メタデータ) (2021-11-30T02:13:54Z) - Sparse Tensor-based Multiscale Representation for Point Cloud Geometry
Compression [18.24902526033056]
Sparse Processing (STP) を用いたVoxelized PCGのマルチスケール表現による統合ポイントクラウド幾何 (PCG) 圧縮手法を開発した。
複雑性を適用することで複雑性を著しく減少させるのは、最も確率の高いVoxels(MP-POV)を中心とした畳み込みのみを実行するためである。
提案手法は,すべてのスケールでモデル共有を行うため,ポイントワイズによる軽量な複雑性と,小さなストレージ欲求を示す。
論文 参考訳(メタデータ) (2021-11-20T17:02:45Z) - Multiscale Point Cloud Geometry Compression [29.605320327889142]
本稿では,3次元ポイント・クラウド・ジオメトリを階層的に再構築するマルチスケール・ツー・エンド・ラーニング・フレームワークを提案する。
このフレームワークは、ポイントクラウド圧縮と再構成のためのスパース畳み込みベースのオートエンコーダの上に開発されている。
論文 参考訳(メタデータ) (2020-11-07T16:11:16Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。