論文の概要: Neural Gas Network Image Features and Segmentation for Brain Tumor
Detection Using Magnetic Resonance Imaging Data
- arxiv url: http://arxiv.org/abs/2301.12176v1
- Date: Sat, 28 Jan 2023 12:16:37 GMT
- ステータス: 処理完了
- システム内更新日: 2023-01-31 18:38:53.144284
- Title: Neural Gas Network Image Features and Segmentation for Brain Tumor
Detection Using Magnetic Resonance Imaging Data
- Title(参考訳): 磁気共鳴画像データを用いた脳腫瘍検出のための神経ガスネットワーク画像の特徴とセグメンテーション
- Authors: S. Muhammad Hossein Mousavi
- Abstract要約: 本研究は,画像コントラスト強調のためのメタヒューリスティックファイアフライアルゴリズム(FA)を前処理として用いた。
また,SVM(Support Vector Machine)分類アルゴリズムを用いて腫瘍分類を行い,深層学習手法と比較した。
95.14 %の分類精度と0.977のセグメンテーション精度を提案手法により達成した。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Accurate detection of brain tumors could save lots of lives and increasing
the accuracy of this binary classification even as much as a few percent has
high importance. Neural Gas Networks (NGN) is a fast, unsupervised algorithm
that could be used in data clustering, image pattern recognition, and image
segmentation. In this research, we used the metaheuristic Firefly Algorithm
(FA) for image contrast enhancement as pre-processing and NGN weights for
feature extraction and segmentation of Magnetic Resonance Imaging (MRI) data on
two brain tumor datasets from the Kaggle platform. Also, tumor classification
is conducted by Support Vector Machine (SVM) classification algorithms and
compared with a deep learning technique plus other features in train and test
phases. Additionally, NGN tumor segmentation is evaluated by famous performance
metrics such as Accuracy, F-measure, Jaccard, and more versus ground truth data
and compared with traditional segmentation techniques. The proposed method is
fast and precise in both tasks of tumor classification and segmentation
compared with other methods. A classification accuracy of 95.14 % and
segmentation accuracy of 0.977 is achieved by the proposed method.
- Abstract(参考訳): 脳腫瘍の正確な検出は、多くの命を救える可能性があり、ほんの数パーセントでもこの二分分類の精度を高めることは、非常に重要である。
Neural Gas Networks (NGN) は、高速で教師なしのアルゴリズムであり、データクラスタリング、画像パターン認識、画像セグメンテーションに使用できる。
本研究では,画像コントラストを前処理としてメタヒューリスティックなfireflyアルゴリズム(fa)を用い,kaggleプラットフォームからの2つの脳腫瘍データセットにおけるmriデータの特徴抽出とセグメンテーションにngn重みを用いた。
また,SVM(Support Vector Machine)分類アルゴリズムを用いて腫瘍の分類を行い,深層学習技術と,列車および試験段階における他の特徴との比較を行った。
さらに、ngn腫瘍のセグメンテーションは、精度、f-measure、jaccardなどの有名なパフォーマンス指標によって評価され、従来のセグメンテーション技術と比較される。
提案法は他の方法と比較して腫瘍分類と分節処理の両方において高速かつ正確である。
95.14 %の分類精度と0.977の分割精度を提案手法により達成した。
関連論文リスト
- Lumbar Spine Tumor Segmentation and Localization in T2 MRI Images Using AI [2.9746083684997418]
本研究は, 脊椎腫瘍の領域分割と局所化をAIアプローチで自動化することを目的とした, 新たなデータ拡張手法を提案する。
畳み込みニューラルネットワーク(CNN)アーキテクチャは、腫瘍の分類に用いられている。3次元の椎骨分割とラベル付け技術は、腰椎の腫瘍の正確な位置を特定するのに役立つ。
その結果, 腫瘍分節の99%の精度, 腫瘍分類の98%の精度, 腫瘍局在の99%の精度が得られた。
論文 参考訳(メタデータ) (2024-05-07T05:55:50Z) - Breast Ultrasound Tumor Classification Using a Hybrid Multitask
CNN-Transformer Network [63.845552349914186]
胸部超音波(BUS)画像分類において,グローバルな文脈情報の収集が重要な役割を担っている。
ビジョントランスフォーマーは、グローバルなコンテキスト情報をキャプチャする能力が改善されているが、トークン化操作によって局所的なイメージパターンを歪めてしまう可能性がある。
本研究では,BUS腫瘍分類とセグメンテーションを行うハイブリッドマルチタスクディープニューラルネットワークであるHybrid-MT-ESTANを提案する。
論文 参考訳(メタデータ) (2023-08-04T01:19:32Z) - Brain tumor multi classification and segmentation in MRI images using
deep learning [3.1248717814228923]
この分類モデルはEfficientNetB1アーキテクチャに基づいており、画像は髄膜腫、グリオーマ、下垂体腺腫、腫瘍の4つのクラスに分類するよう訓練されている。
セグメンテーションモデルはU-Netアーキテクチャに基づいており、MRI画像から腫瘍を正確にセグメンテーションするように訓練されている。
論文 参考訳(メタデータ) (2023-04-20T01:32:55Z) - An Improved Deep Convolutional Neural Network by Using Hybrid
Optimization Algorithms to Detect and Classify Brain Tumor Using Augmented
MRI Images [0.9990687944474739]
本稿では,最適化アルゴリズムを改良することにより,深層畳み込み学習の改善を実現する。
提案手法の性能を2073個のMRI画像で検証する実験を行った。
性能比較では、DCNN-G-HHOは既存の手法よりもはるかに成功しており、特にスコアの精度は97%である。
論文 参考訳(メタデータ) (2022-06-08T14:29:06Z) - Preservation of High Frequency Content for Deep Learning-Based Medical
Image Classification [74.84221280249876]
大量の胸部ラジオグラフィーの効率的な分析は、医師や放射線技師を助けることができる。
本稿では,視覚情報の効率的な識別と符号化のための離散ウェーブレット変換(DWT)を提案する。
論文 参考訳(メタデータ) (2022-05-08T15:29:54Z) - EMT-NET: Efficient multitask network for computer-aided diagnosis of
breast cancer [58.720142291102135]
乳腺腫瘍の分類と分別を同時に行うための,効率的で軽量な学習アーキテクチャを提案する。
腫瘍分類ネットワークにセグメンテーションタスクを組み込むことにより,腫瘍領域に着目したバックボーンネットワークで表現を学習する。
腫瘍分類の精度、感度、特異性はそれぞれ88.6%、94.1%、85.3%である。
論文 参考訳(メタデータ) (2022-01-13T05:24:40Z) - Cross-Modality Deep Feature Learning for Brain Tumor Segmentation [158.8192041981564]
本稿では, マルチモーダルMRIデータから脳腫瘍を抽出するクロスモーダルディープ・フィーチャーラーニング・フレームワークを提案する。
中心となる考え方は、不十分なデータスケールを補うために、マルチモダリティデータにまたがる豊富なパターンをマイニングすることだ。
on the BraTS benchmarks, this proposed cross-modality deep feature learning framework could effective improve the brain tumor segmentation performance。
論文 参考訳(メタデータ) (2022-01-07T07:46:01Z) - Brain Tumor Detection and Classification based on Hybrid Ensemble
Classifier [0.6091702876917281]
本稿では,ランダムフォレスト(RF)とK-ニアレストネイバー(K-Nearest Neighbour)と決定木(DT)を用いたハイブリッドアンサンブル法を提案する。
腫瘍領域の面積を計算し、脳腫瘍を良性および悪性に分類することを目的としている。
提案手法は,トレーニングとテストにそれぞれ85:15で使用される2556画像のデータセット上でテストを行い,97.305%の精度を示す。
論文 参考訳(メタデータ) (2021-01-01T11:52:29Z) - Improved Slice-wise Tumour Detection in Brain MRIs by Computing
Dissimilarities between Latent Representations [68.8204255655161]
磁気共鳴画像(MRI)の異常検出は教師なし手法で行うことができる。
本研究では,変分オートエンコーダの潜伏空間における相似関数の計算に基づいて,腫瘍検出のためのスライスワイズ半教師法を提案する。
本研究では,高解像度画像上でのモデルをトレーニングし,再現の質を向上させることにより,異なるベースラインに匹敵する結果が得られることを示す。
論文 参考訳(メタデータ) (2020-07-24T14:02:09Z) - Y-Net for Chest X-Ray Preprocessing: Simultaneous Classification of
Geometry and Segmentation of Annotations [70.0118756144807]
この研究は、機械学習アルゴリズムに胸部X線入力のための一般的な前処理ステップを導入する。
VGG11エンコーダをベースとした改良Y-Netアーキテクチャを用いて,ラジオグラフィの幾何学的配向とセグメンテーションを同時に学習する。
対照画像の27.0%,34.9%に対し,95.8%,96.2%のアノテーションマスクが認められた。
論文 参考訳(メタデータ) (2020-05-08T02:16:17Z) - Region of Interest Identification for Brain Tumors in Magnetic Resonance
Images [8.75217589103206]
そこで我々は,腫瘍周辺で最小の境界ボックスを見つけるために,軽量計算量で高速かつ自動化された手法を提案する。
この領域は、サブリージョン腫瘍セグメンテーションのトレーニングネットワークにおける前処理ステップとして使用できる。
提案手法は BraTS 2015 データセット上で評価され,得られた平均 DICE スコアは 0.73 である。
論文 参考訳(メタデータ) (2020-02-26T14:10:40Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。