Reconstruction of Gaussian Quantum States from Ideal Position
Measurements: Beyond Pauli's Problem, I
- URL: http://arxiv.org/abs/2301.12498v1
- Date: Sun, 29 Jan 2023 17:31:25 GMT
- Title: Reconstruction of Gaussian Quantum States from Ideal Position
Measurements: Beyond Pauli's Problem, I
- Authors: Maurice de Gosson
- Abstract summary: We show that the covariance matrix of a quantum state can be reconstructed from position measurements using the simple notion of polar duality.
All multidimensional Gaussian states (pure or mixed) can in principle be reconstructed if the quantum system is well localized in configuration space.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We show that the covariance matrix of a quantum state can be reconstructed
from position measurements using the simple notion of polar duality, familiar
from convex geometry. In particular, all multidimensional Gaussian states (pure
or mixed) can in principle be reconstructed if the quantum system is well
localized in configuration space. The main observation which makes this
possible is that the John ellipsoid of the Cartesian product of the position
localization by its polar dual contains a quantum blob, and can therefore be
identified with the covariance ellipsoid of a quantum state.
Related papers
- Absolute dimensionality of quantum ensembles [41.94295877935867]
The dimension of a quantum state is traditionally seen as the number of superposed distinguishable states in a given basis.
We propose an absolute, i.e.basis-independent, notion of dimensionality for ensembles of quantum states.
arXiv Detail & Related papers (2024-09-03T09:54:15Z) - Many-Body Quantum Geometric Dipole [0.0]
Collective excitations of many-body electron systems can carry internal structure, tied to the quantum geometry of the Hilbert space in which they are embedded.
We demonstrate in this work that this property can be formulated in a generic way, which does not require wavefunctions expressed in terms of single particle-hole states.
Our study demonstrates that the QGD is an intrinsic property of collective modes which is valid beyond approximations one might make for their wavefunctions.
arXiv Detail & Related papers (2024-06-17T21:01:03Z) - Orthonormal bases of extreme quantumness [1.1510009152620668]
Some coherent and anticoherent spin states are known as optimal quantum rotosensors.
We introduce a measure of quantumness for orthonormal bases of spin states, determined by the average anticoherence of individual vectors and the Wehrl entropy.
arXiv Detail & Related papers (2023-06-01T10:35:45Z) - A vertical gate-defined double quantum dot in a strained germanium
double quantum well [48.7576911714538]
Gate-defined quantum dots in silicon-germanium heterostructures have become a compelling platform for quantum computation and simulation.
We demonstrate the operation of a gate-defined vertical double quantum dot in a strained germanium double quantum well.
We discuss challenges and opportunities and outline potential applications in quantum computing and quantum simulation.
arXiv Detail & Related papers (2023-05-23T13:42:36Z) - Overlapping qubits from non-isometric maps and de Sitter tensor networks [41.94295877935867]
We show that processes in local effective theories can be spoofed with a quantum system with fewer degrees of freedom.
We highlight how approximate overlapping qubits are conceptually connected to Hilbert space dimension verification, degree-of-freedom counting in black holes and holography.
arXiv Detail & Related papers (2023-04-05T18:08:30Z) - Experimental demonstration of optimal unambiguous two-out-of-four
quantum state elimination [52.77024349608834]
A core principle of quantum theory is that non-orthogonal quantum states cannot be perfectly distinguished with single-shot measurements.
Here we implement a quantum state elimination measurement which unambiguously rules out two of four pure, non-orthogonal quantum states.
arXiv Detail & Related papers (2022-06-30T18:00:01Z) - Symplectic Polar Duality, Quantum Blobs, and Generalized Gaussians [0.0]
We show that quantum blobs are the smallest symplectic invariant regions of the phase space compatible with the uncertainty principle in its strong Robertson--Schr"odinger form.
We show that these phase space units can be characterized by a simple condition of reflexivity using polar duality, thus improving previous results.
arXiv Detail & Related papers (2022-06-13T17:32:05Z) - Self-bound droplets in quasi-two-dimensional dipolar condensates [9.09005713306587]
We show that there exist two quantum phases corresponding to the macroscopic squeezed vacuum and squeezed coherent states.
We find that the critical atom number for the self-bound droplets is determined by the quantum phases.
arXiv Detail & Related papers (2021-12-17T04:29:30Z) - Quantum particle across Grushin singularity [77.34726150561087]
We study the phenomenon of transmission across the singularity that separates the two half-cylinders.
All the local realisations of the free (Laplace-Beltrami) quantum Hamiltonian are examined as non-equivalent protocols of transmission/reflection.
This allows to comprehend the distinguished status of the so-called bridging' transmission protocol previously identified in the literature.
arXiv Detail & Related papers (2020-11-27T12:53:23Z) - Bose-Einstein condensate soliton qubit states for metrological
applications [58.720142291102135]
We propose novel quantum metrology applications with two soliton qubit states.
Phase space analysis, in terms of population imbalance - phase difference variables, is also performed to demonstrate macroscopic quantum self-trapping regimes.
arXiv Detail & Related papers (2020-11-26T09:05:06Z) - Quantum Polar Duality and the Symplectic Camel: a Geometric Approach to
Quantization [0.0]
We study the notion of quantum polarity, which is a kind of geometric Fourier transform between sets of positions and sets of momenta.
We show that quantum polarity allows solving the Pauli reconstruction problem for Gaussian wavefunctions.
We discuss the Hardy uncertainty principle and the less-known Donoho--Stark principle from the point of view of quantum polarity.
arXiv Detail & Related papers (2020-09-22T16:55:28Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.