3D Object Detection in LiDAR Point Clouds using Graph Neural Networks
- URL: http://arxiv.org/abs/2301.12519v1
- Date: Sun, 29 Jan 2023 19:23:01 GMT
- Title: 3D Object Detection in LiDAR Point Clouds using Graph Neural Networks
- Authors: Shreelakshmi C R, Surya S. Durbha, Gaganpreet Singh
- Abstract summary: This research proposes Graph Neural Network (GNN) based framework to learn and identify the objects in the 3D LiDAR point clouds.
GNNs are class of deep learning which learns the patterns and objects based on the principle of graph learning.
- Score: 1.8369974607582582
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: LiDAR (Light Detection and Ranging) is an advanced active remote sensing
technique working on the principle of time of travel (ToT) for capturing highly
accurate 3D information of the surroundings. LiDAR has gained wide attention in
research and development with the LiDAR industry expected to reach 2.8 billion
$ by 2025. Although the LiDAR dataset is of rich density and high spatial
resolution, it is challenging to process LiDAR data due to its inherent 3D
geometry and massive volume. But such a high-resolution dataset possesses
immense potential in many applications and has great potential in 3D object
detection and recognition. In this research we propose Graph Neural Network
(GNN) based framework to learn and identify the objects in the 3D LiDAR point
clouds. GNNs are class of deep learning which learns the patterns and objects
based on the principle of graph learning which have shown success in various 3D
computer vision tasks.
Related papers
- Multistream Network for LiDAR and Camera-based 3D Object Detection in Outdoor Scenes [59.78696921486972]
Fusion of LiDAR and RGB data has the potential to enhance outdoor 3D object detection accuracy.<n>We propose a MultiStream Detection (MuStD) network, that meticulously extracts task-relevant information from both data modalities.
arXiv Detail & Related papers (2025-07-25T14:20:16Z) - Towards Scalable Spatial Intelligence via 2D-to-3D Data Lifting [64.64738535860351]
We present a scalable pipeline that converts single-view images into comprehensive, scale- and appearance-realistic 3D representations.<n>Our method bridges the gap between the vast repository of imagery and the increasing demand for spatial scene understanding.<n>By automatically generating authentic, scale-aware 3D data from images, we significantly reduce data collection costs and open new avenues for advancing spatial intelligence.
arXiv Detail & Related papers (2025-07-24T14:53:26Z) - Training an Open-Vocabulary Monocular 3D Object Detection Model without 3D Data [57.53523870705433]
We propose a novel open-vocabulary monocular 3D object detection framework, dubbed OVM3D-Det.
OVM3D-Det does not require high-precision LiDAR or 3D sensor data for either input or generating 3D bounding boxes.
It employs open-vocabulary 2D models and pseudo-LiDAR to automatically label 3D objects in RGB images, fostering the learning of open-vocabulary monocular 3D detectors.
arXiv Detail & Related papers (2024-11-23T21:37:21Z) - STONE: A Submodular Optimization Framework for Active 3D Object Detection [20.54906045954377]
Key requirement for training an accurate 3D object detector is the availability of a large amount of LiDAR-based point cloud data.
This paper proposes a unified active 3D object detection framework, for greatly reducing the labeling cost of training 3D object detectors.
arXiv Detail & Related papers (2024-10-04T20:45:33Z) - VFMM3D: Releasing the Potential of Image by Vision Foundation Model for Monocular 3D Object Detection [80.62052650370416]
monocular 3D object detection holds significant importance across various applications, including autonomous driving and robotics.
In this paper, we present VFMM3D, an innovative framework that leverages the capabilities of Vision Foundation Models (VFMs) to accurately transform single-view images into LiDAR point cloud representations.
arXiv Detail & Related papers (2024-04-15T03:12:12Z) - PillarNeXt: Rethinking Network Designs for 3D Object Detection in LiDAR
Point Clouds [29.15589024703907]
In this paper, we revisit the local point aggregators from the perspective of allocating computational resources.
We find that the simplest pillar based models perform surprisingly well considering both accuracy and latency.
Our results challenge the common intuition that the detailed geometry modeling is essential to achieve high performance for 3D object detection.
arXiv Detail & Related papers (2023-05-08T17:59:14Z) - MonoDistill: Learning Spatial Features for Monocular 3D Object Detection [80.74622486604886]
We propose a simple and effective scheme to introduce the spatial information from LiDAR signals to the monocular 3D detectors.
We use the resulting data to train a 3D detector with the same architecture as the baseline model.
Experimental results show that the proposed method can significantly boost the performance of the baseline model.
arXiv Detail & Related papers (2022-01-26T09:21:41Z) - 3D Visual Tracking Framework with Deep Learning for Asteroid Exploration [22.808962211830675]
In this paper, we focus on the studied accurate and real-time method for 3D tracking.
A new large-scale 3D asteroid tracking dataset is presented, including binocular video sequences, depth maps, and point clouds of diverse asteroids.
We propose a deep-learning based 3D tracking framework, named as Track3D, which involves 2D monocular tracker and a novel light-weight amodal axis-aligned bounding-box network, A3BoxNet.
arXiv Detail & Related papers (2021-11-21T04:14:45Z) - Learning Geometry-Guided Depth via Projective Modeling for Monocular 3D Object Detection [70.71934539556916]
We learn geometry-guided depth estimation with projective modeling to advance monocular 3D object detection.
Specifically, a principled geometry formula with projective modeling of 2D and 3D depth predictions in the monocular 3D object detection network is devised.
Our method remarkably improves the detection performance of the state-of-the-art monocular-based method without extra data by 2.80% on the moderate test setting.
arXiv Detail & Related papers (2021-07-29T12:30:39Z) - Active 3D Shape Reconstruction from Vision and Touch [66.08432412497443]
Humans build 3D understandings of the world through active object exploration, using jointly their senses of vision and touch.
In 3D shape reconstruction, most recent progress has relied on static datasets of limited sensory data such as RGB images, depth maps or haptic readings.
We introduce a system composed of: 1) a haptic simulator leveraging high spatial resolution vision-based tactile sensors for active touching of 3D objects; 2) a mesh-based 3D shape reconstruction model that relies on tactile or visuotactile priors to guide the shape exploration; and 3) a set of data-driven solutions with either tactile or visuo
arXiv Detail & Related papers (2021-07-20T15:56:52Z) - PC-DAN: Point Cloud based Deep Affinity Network for 3D Multi-Object
Tracking (Accepted as an extended abstract in JRDB-ACT Workshop at CVPR21) [68.12101204123422]
A point cloud is a dense compilation of spatial data in 3D coordinates.
We propose a PointNet-based approach for 3D Multi-Object Tracking (MOT)
arXiv Detail & Related papers (2021-06-03T05:36:39Z) - 3D3L: Deep Learned 3D Keypoint Detection and Description for LiDARs [25.73598441491818]
In this publication, we use a state-of-the-art 2D feature network as a basis for 3D3L, exploiting both intensity and depth of LiDAR range images.
Our results show that these keypoints and descriptors extracted from LiDAR scan images outperform state-of-the-art on different benchmark metrics.
arXiv Detail & Related papers (2021-03-25T13:08:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.