論文の概要: Rendering the Directional TSDF for Tracking and Multi-Sensor
Registration with Point-To-Plane Scale ICP
- arxiv url: http://arxiv.org/abs/2301.12796v1
- Date: Mon, 30 Jan 2023 11:46:03 GMT
- ステータス: 処理完了
- システム内更新日: 2023-01-31 15:08:14.097479
- Title: Rendering the Directional TSDF for Tracking and Multi-Sensor
Registration with Point-To-Plane Scale ICP
- Title(参考訳): Point-to-Plane Scale ICPによるトラッキングとマルチセンサ登録のための指向性TSDFのレンダリング
- Authors: Malte Splietker and Sven Behnke
- Abstract要約: Directional Truncated Signed Distance Dense (DTSDF)は、通常のTSDFの拡張である。
DTSDFから深度と色を描画する手法を提案する。
提案手法は,マップ化されたシーンのトラッキング性能の向上と再使用性の向上を図っている。
- 参考スコア(独自算出の注目度): 29.998917158604694
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Dense real-time tracking and mapping from RGB-D images is an important tool
for many robotic applications, such as navigation and manipulation. The
recently presented Directional Truncated Signed Distance Function (DTSDF) is an
augmentation of the regular TSDF that shows potential for more coherent maps
and improved tracking performance. In this work, we present methods for
rendering depth- and color images from the DTSDF, making it a true drop-in
replacement for the regular TSDF in established trackers. We evaluate the
algorithm on well-established datasets and observe that our method improves
tracking performance and increases re-usability of mapped scenes. Furthermore,
we add color integration which notably improves color-correctness at adjacent
surfaces. Our novel formulation of combined ICP with frame-to-keyframe
photometric error minimization further improves tracking results. Lastly, we
introduce Sim3 point-to-plane ICP for refining pose priors in a multi-sensor
scenario with different scale factors.
- Abstract(参考訳): RGB-D画像からの高密度リアルタイムトラッキングとマッピングは、ナビゲーションや操作など、多くのロボットアプリケーションにとって重要なツールである。
最近発表された Directional Truncated Signed Distance Function (DTSDF) は、通常のTSDFの拡張であり、よりコヒーレントなマップの可能性と追跡性能の向上を示している。
本研究では,DTSDFから深度や色を描画する手法を提案する。
本手法は,確立されたデータセット上でのアルゴリズムの評価を行い,追跡性能の向上とマップされたシーンの再使用性の向上を検証した。
さらに,隣り合う面の色補正性が向上する色統合も追加する。
提案手法は, フレーム対キーフレームの光量誤差を最小化し, 追尾精度をさらに向上させる。
最後に、異なるスケール因子を持つマルチセンサーシナリオにおいて、ポーズ前処理のためのSim3ポイントツープレーンICPを紹介する。
関連論文リスト
- DELTA: Dense Efficient Long-range 3D Tracking for any video [82.26753323263009]
DELTAは3次元空間内のすべてのピクセルを効率よく追跡し,ビデオ全体の正確な動き推定を可能にする手法である。
提案手法では,低分解能追跡のためのグローバルアテンション機構と,高分解能予測を実現するためのトランスフォーマーベースアップサンプラーを併用する。
提案手法は,3次元空間における細粒度・長期動作追跡を必要とするアプリケーションに対して,ロバストなソリューションを提供する。
論文 参考訳(メタデータ) (2024-10-31T17:59:01Z) - Coordinate-Aware Thermal Infrared Tracking Via Natural Language Modeling [16.873697155916997]
NLMTrackは、座標対応の熱赤外追跡モデルである。
NLMTrackは、特徴抽出と特徴融合を統一するエンコーダを適用している。
実験により、NLMTrackは複数のベンチマークで最先端のパフォーマンスを達成することが示された。
論文 参考訳(メタデータ) (2024-07-11T08:06:31Z) - $ν$-DBA: Neural Implicit Dense Bundle Adjustment Enables Image-Only Driving Scene Reconstruction [31.64067619807023]
$nu$-DBAは、地図パラメトリゼーションのための3次元暗黙曲面を用いた幾何学的密集束調整(DBA)を実装している。
我々は、高密度マッピングの品質をさらに向上するために、シーンごとの自己スーパービジョンで光学フローモデルを微調整する。
論文 参考訳(メタデータ) (2024-04-29T05:29:26Z) - MM3DGS SLAM: Multi-modal 3D Gaussian Splatting for SLAM Using Vision, Depth, and Inertial Measurements [59.70107451308687]
カメラ画像と慣性測定による地図表現に3Dガウスアンを用いることで、精度の高いSLAMが実現できることを示す。
我々の手法であるMM3DGSは、より高速なスケール認識と軌道追跡の改善により、事前レンダリングの限界に対処する。
また,カメラと慣性測定ユニットを備えた移動ロボットから収集したマルチモーダルデータセットUT-MMもリリースした。
論文 参考訳(メタデータ) (2024-04-01T04:57:41Z) - CVT-xRF: Contrastive In-Voxel Transformer for 3D Consistent Radiance Fields from Sparse Inputs [65.80187860906115]
スパース入力によるNeRFの性能向上のための新しい手法を提案する。
まず, サンプル線が, 3次元空間内の特定のボクセルと交差することを保証するために, ボクセルを用いた放射線サンプリング戦略を採用する。
次に、ボクセル内の追加点をランダムにサンプリングし、トランスフォーマーを適用して各線上の他の点の特性を推測し、ボリュームレンダリングに組み込む。
論文 参考訳(メタデータ) (2024-03-25T15:56:17Z) - Differentiable Registration of Images and LiDAR Point Clouds with
VoxelPoint-to-Pixel Matching [58.10418136917358]
カメラからの2D画像とLiDARからの3Dポイントクラウドの間のクロスモダリティ登録は、コンピュータビジョンとロボットトレーニングにおいて重要な課題である。
ニューラルネットワークで学習した点パターンと画素パターンのマッチングによる2次元3次元対応の推定
我々は、異なる潜在画素空間を介して3次元特徴を表現するために、構造化されたモダリティマッチングソルバを学習する。
論文 参考訳(メタデータ) (2023-12-07T05:46:10Z) - DirectTracker: 3D Multi-Object Tracking Using Direct Image Alignment and
Photometric Bundle Adjustment [41.27664827586102]
直接法は視覚計測とSLAMの応用において優れた性能を示した。
本研究では,3次元物体検出のための短期追跡とスライディングウインドウ光度束調整のための直像アライメントを効果的に組み合わせたフレームワークを提案する。
論文 参考訳(メタデータ) (2022-09-29T17:40:22Z) - iSDF: Real-Time Neural Signed Distance Fields for Robot Perception [64.80458128766254]
iSDFは実時間符号付き距離場再構成のための連続学習システムである。
より正確な再構築と、衝突コストと勾配のより良い近似を生成する。
論文 参考訳(メタデータ) (2022-04-05T15:48:39Z) - TANDEM: Tracking and Dense Mapping in Real-time using Deep Multi-view
Stereo [55.30992853477754]
本稿では,リアルタイムな単分子追跡と高密度フレームワークであるTANDEMを紹介する。
ポーズ推定のために、TANDEMはアライメントのスライディングウィンドウに基づいて光度バンドル調整を行う。
TANDEMは最先端のリアルタイム3D再構成性能を示す。
論文 参考訳(メタデータ) (2021-11-14T19:01:02Z) - Rendering and Tracking the Directional TSDF: Modeling Surface
Orientation for Coherent Maps [28.502280038100167]
Directional Truncated Signed Distance Dense (DTSDF)は、通常のTSDFの拡張である。
そこで本研究では,DTSDFから深度とカラーマップを描画する手法を提案する。
論文 参考訳(メタデータ) (2021-08-18T12:37:15Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。