論文の概要: Robust empirical risk minimization via Newton's method
- arxiv url: http://arxiv.org/abs/2301.13192v2
- Date: Mon, 17 Jul 2023 16:27:52 GMT
- ステータス: 処理完了
- システム内更新日: 2023-07-18 23:31:25.349502
- Title: Robust empirical risk minimization via Newton's method
- Title(参考訳): ニュートン法によるロバストな経験的リスク最小化
- Authors: Eirini Ioannou, Muni Sreenivas Pydi, Po-Ling Loh
- Abstract要約: 実験的リスク最小化のためのニュートン法の新しい変種について検討した。
目的関数の勾配と Hessian は、ロバストな推定器に置き換えられる。
また,共役勾配法に基づくニュートン方向のロバストな解を求めるアルゴリズムを提案する。
- 参考スコア(独自算出の注目度): 9.797319790710711
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: A new variant of Newton's method for empirical risk minimization is studied,
where at each iteration of the optimization algorithm, the gradient and Hessian
of the objective function are replaced by robust estimators taken from existing
literature on robust mean estimation for multivariate data. After proving a
general theorem about the convergence of successive iterates to a small ball
around the population-level minimizer, consequences of the theory in
generalized linear models are studied when data are generated from Huber's
epsilon-contamination model and/or heavytailed distributions. An algorithm for
obtaining robust Newton directions based on the conjugate gradient method is
also proposed, which may be more appropriate for high-dimensional settings, and
conjectures about the convergence of the resulting algorithm are offered.
Compared to robust gradient descent, the proposed algorithm enjoys the faster
rates of convergence for successive iterates often achieved by second-order
algorithms for convex problems, i.e., quadratic convergence in a neighborhood
of the optimum, with a stepsize that may be chosen adaptively via backtracking
linesearch.
- Abstract(参考訳): 実験的リスク最小化のためのニュートン法の新しい変種について検討し、最適化アルゴリズムの反復毎に、目的関数の勾配とヘッシアンを、多変量データのロバスト平均推定に関する既存の文献から取られたロバスト推定器に置き換える。
集団レベル最小化器の周りの小さな球への逐次反復の収束に関する一般的な定理を証明した後、ハマーのエプシロン汚染モデルや重み付き分布からデータを生成する際に一般化線形モデルにおける理論の結果を研究する。
共役勾配法に基づくロバストニュートン方向を求めるアルゴリズムも提案されており、高次元設定に適しており、結果として得られるアルゴリズムの収束に関する予想も提案されている。
頑健な勾配降下と比較して、提案アルゴリズムは、凸問題に対する2次アルゴリズムによってしばしば達成される連続的な反復に対する収束の高速な速度、すなわち、最適近傍における二次収束を、バックトラックラインサーチによって適応的に選択できるステップサイズで楽しむ。
関連論文リスト
- Incremental Quasi-Newton Methods with Faster Superlinear Convergence
Rates [50.36933471975506]
各成分関数が強く凸であり、リプシッツ連続勾配とヘシアンを持つ有限和最適化問題を考える。
最近提案されたインクリメンタル準ニュートン法は、BFGSの更新に基づいて、局所的な超線形収束率を達成する。
本稿では、対称ランク1更新をインクリメンタルフレームワークに組み込むことにより、より効率的な準ニュートン法を提案する。
論文 参考訳(メタデータ) (2024-02-04T05:54:51Z) - Stochastic Mirror Descent for Large-Scale Sparse Recovery [13.500750042707407]
本稿では,2次近似の高次元スパースパラメータの統計的推定への応用について論じる。
提案アルゴリズムは, 回帰器分布の弱い仮定の下で, 推定誤差の最適収束を実現する。
論文 参考訳(メタデータ) (2022-10-23T23:23:23Z) - Hessian Averaging in Stochastic Newton Methods Achieves Superlinear
Convergence [69.65563161962245]
ニュートン法を用いて,滑らかで強凸な目的関数を考える。
最適段階において局所収束に遷移する普遍重み付き平均化スキームが存在することを示す。
論文 参考訳(メタデータ) (2022-04-20T07:14:21Z) - A Semismooth Newton Stochastic Proximal Point Algorithm with Variance Reduction [2.048226951354646]
弱凸, 複合最適化問題に対する実装可能な近位点(SPP)法を開発した。
提案アルゴリズムは分散低減機構を組み込んでおり、その結果の更新は不正確なセミスムース・ニュートン・フレームワークを用いて解決される。
論文 参考訳(メタデータ) (2022-04-01T13:08:49Z) - Amortized Implicit Differentiation for Stochastic Bilevel Optimization [53.12363770169761]
決定論的条件と決定論的条件の両方において、二段階最適化問題を解決するアルゴリズムのクラスについて検討する。
厳密な勾配の推定を補正するために、ウォームスタート戦略を利用する。
このフレームワークを用いることで、これらのアルゴリズムは勾配の偏りのない推定値にアクセス可能な手法の計算複雑性と一致することを示す。
論文 参考訳(メタデータ) (2021-11-29T15:10:09Z) - A Stochastic Newton Algorithm for Distributed Convex Optimization [62.20732134991661]
均質な分散凸最適化のためのNewtonアルゴリズムを解析し、各マシンが同じ人口目標の勾配を計算する。
提案手法は,既存の手法と比較して,性能を損なうことなく,必要な通信ラウンドの数,頻度を低減できることを示す。
論文 参考訳(メタデータ) (2021-10-07T17:51:10Z) - New Riemannian preconditioned algorithms for tensor completion via
polyadic decomposition [10.620193291237262]
これらのアルゴリズムは、ポリアジック分解形態におけるローランクテンソルの因子行列の積空間上の非ユークリッド計量を利用する。
提案された勾配降下アルゴリズムがテンソル完備問題の定常点にグローバルに収束することを証明する。
合成データと実世界のデータの数値計算結果から,提案アルゴリズムは最先端アルゴリズムよりもメモリと時間において効率的であることが示唆された。
論文 参考訳(メタデータ) (2021-01-26T22:11:06Z) - A Feasible Level Proximal Point Method for Nonconvex Sparse Constrained
Optimization [25.73397307080647]
本稿では,汎用凸あるいは非汎用機械目標の新しいモデルを提案する。
本稿では,各サブプロブレムの点レベルを徐々に緩和した制約を解くアルゴリズムを提案する。
我々は,新しい数値スケール問題の有効性を実証する。
論文 参考訳(メタデータ) (2020-10-23T05:24:05Z) - IDEAL: Inexact DEcentralized Accelerated Augmented Lagrangian Method [64.15649345392822]
本稿では,局所関数が滑らかで凸な分散最適化環境下での原始的手法設計のためのフレームワークを提案する。
提案手法は,加速ラグランジアン法により誘導されるサブプロブレム列を概ね解いたものである。
加速度勾配降下と組み合わせることで,収束速度が最適で,最近導出された下界と一致した新しい原始アルゴリズムが得られる。
論文 参考訳(メタデータ) (2020-06-11T18:49:06Z) - Distributed Stochastic Nonconvex Optimization and Learning based on
Successive Convex Approximation [26.11677569331688]
本稿では,ネットワーク内のエージェントの総和の分散アルゴリズム最小化のための新しいフレームワークを提案する。
提案手法は分散ニューラルネットワークに適用可能であることを示す。
論文 参考訳(メタデータ) (2020-04-30T15:36:46Z) - Optimal Randomized First-Order Methods for Least-Squares Problems [56.05635751529922]
このアルゴリズムのクラスは、最小二乗問題に対する最も高速な解法のうち、いくつかのランダム化手法を含んでいる。
我々は2つの古典的埋め込み、すなわちガウス射影とアダマール変換のサブサンプリングに焦点を当てる。
得られたアルゴリズムは条件数に依存しない最小二乗問題の解法として最も複雑である。
論文 参考訳(メタデータ) (2020-02-21T17:45:32Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。