論文の概要: Variational Amplitude Amplification for Solving QUBO Problems
- arxiv url: http://arxiv.org/abs/2301.13665v2
- Date: Wed, 1 Feb 2023 15:36:31 GMT
- ステータス: 処理完了
- システム内更新日: 2023-02-02 18:46:31.185428
- Title: Variational Amplitude Amplification for Solving QUBO Problems
- Title(参考訳): 変分振幅増幅によるqubo問題の解法
- Authors: Daniel Koch, Massimiliano Cutugno, Saahil Patel, Laura Wessing, Paul
M. Alsing
- Abstract要約: 本研究は、キュービット重畳状態に適したQUBO問題に焦点をあてる。
我々は、QUBOをコストオラクルの演算として符号化する回路設計を、標準Grover拡散演算子$U_textrms$と組み合わせると、最適および近似最適解に対応する状態の測定確率が高くなることを示す。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We investigate the use of amplitude amplification on the gate-based model of
quantum computing as a means for solving combinatorial optimization problems.
This study focuses primarily on QUBO (quadratic unconstrained binary
optimization) problems, which are well-suited for qubit superposition states.
Specifically, we demonstrate circuit designs which encode QUBOs as `cost
oracle' operations $U_{\textrm{C}}$, which when combined with the standard
Grover diffusion operator $U_{\textrm{s}}$ lead to high probabilities of
measurement for states corresponding to the optimal and near optimal solutions.
In order to achieve these probabilities, a single scalar parameter
$p_{\textrm{s}}$ is required, which we show can be found through a variational
quantum-classical hybrid approach.
- Abstract(参考訳): 組合せ最適化問題の解法として,量子コンピューティングのゲートベースモデルにおける振幅増幅法について検討する。
本研究は主にqubo(quadratic unconstrained binary optimization)問題に焦点をあてる。
具体的には、QUBOを‘コストオラクル’演算としてエンコードする回路設計を、標準Grover拡散演算子$U_{\textrm{C}}$と組み合わせると、最適および近似最適解に対応する状態の測定確率が高くなることを示す。
これらの確率を達成するためには、単一のスカラーパラメータ $p_{\textrm{s}}$ が必要である。
関連論文リスト
- Grover Adaptive Search with Spin Variables [3.190355298836875]
このスピンベースアルゴリズムのために設計された新しい量子辞書サブルーチンを導入する。
このアプローチの重要な利点は、量子回路を構成するのに必要なCNOTゲートの数を大幅に削減することである。
論文 参考訳(メタデータ) (2024-10-15T14:24:27Z) - A Sample Efficient Alternating Minimization-based Algorithm For Robust Phase Retrieval [56.67706781191521]
そこで本研究では,未知の信号の復元を課題とする,ロバストな位相探索問題を提案する。
提案するオラクルは、単純な勾配ステップと外れ値を用いて、計算学的スペクトル降下を回避している。
論文 参考訳(メタデータ) (2024-09-07T06:37:23Z) - Performance Upper Bound of Grover-Mixer Quantum Alternating Operator Ansatz [3.5023108034606256]
QAOA(Quantum Alternating Operator Ansatz)は最適化問題を解くための量子アルゴリズムの一分野である。
特定の変種であるGrover-Mixer Quantum Alternating Operator Ansatz (GM-QAOA)は、等価な目的値を共有する状態間で均一な振幅を保証する。
GM-QAOAはサンプリング確率を2次的に向上させ,一貫した性能を維持するために,問題サイズと指数関数的にスケールする回路深度を必要とすることを示す。
論文 参考訳(メタデータ) (2024-05-06T05:47:27Z) - Posiform Planting: Generating QUBO Instances for Benchmarking [2.7624021966289605]
本稿では,任意のサイズのランダムQUBOインスタンスを既知の最適解で生成する,posform plantingと呼ばれる新しい手法を提案する。
実験では,最大5,627ドルキュービットの最適化問題の最適植込み解をサンプリングするD-Wave量子アニールの能力を実証した。
論文 参考訳(メタデータ) (2023-08-10T21:23:41Z) - Symmetric Tensor Networks for Generative Modeling and Constrained
Combinatorial Optimization [72.41480594026815]
ポートフォリオ最適化からロジスティクスに至るまで、制約付き最適化問題は業界に多い。
これらの問題の解決における主要な障害の1つは、有効な検索空間を制限する非自明なハード制約の存在である。
本研究では、Ax=bという形の任意の整数値等式制約をU(1)対称ネットワーク(TN)に直接エンコードし、それらの適用性を量子に着想を得た生成モデルとして活用する。
論文 参考訳(メタデータ) (2022-11-16T18:59:54Z) - Quantum-inspired optimization for wavelength assignment [51.55491037321065]
波長割当問題を解くための量子インスピレーションアルゴリズムを提案し,開発する。
本研究は,電気通信における現実的な問題に対する量子インスパイアされたアルゴリズムの活用の道筋をたどるものである。
論文 参考訳(メタデータ) (2022-11-01T07:52:47Z) - Problem-Size Independent Angles for a Grover-Driven Quantum Approximate
Optimization Algorithm [0.0]
本稿では,Grover-driven,QAOA-prepared状態下でのハミルトニアンの期待値の計算をシステムサイズとは無関係に行うことができることを示す。
このような計算は、大きな問題の大きさの限界において、QAOAにおける角度のパフォーマンスと予測可能性に関する洞察を与えるのに役立つ。
論文 参考訳(メタデータ) (2022-08-22T17:18:25Z) - Twisted hybrid algorithms for combinatorial optimization [68.8204255655161]
提案されたハイブリッドアルゴリズムは、コスト関数をハミルトニアン問題にエンコードし、回路の複雑さの低い一連の状態によってエネルギーを最適化する。
レベル$p=2,ldots, 6$の場合、予想される近似比をほぼ維持しながら、レベル$p$を1に減らすことができる。
論文 参考訳(メタデータ) (2022-03-01T19:47:16Z) - Gaussian Amplitude Amplification for Quantum Pathfinding [0.0]
逐次連結な二部グラフの幾何学に焦点をあて、ガウス分布によって記述可能な解空間を自然に生み出す。
本稿では,これらの分布を符号化したオラクルを用いて振幅増幅による最適経路を解く方法を示す。
論文 参考訳(メタデータ) (2021-12-15T14:41:14Z) - Convergence of adaptive algorithms for weakly convex constrained
optimization [59.36386973876765]
モローエンベロープの勾配のノルムに対して$mathcaltilde O(t-1/4)$収束率を証明する。
我々の分析では、最小バッチサイズが1ドル、定数が1位と2位のモーメントパラメータが1ドル、そしておそらくスムーズな最適化ドメインで機能する。
論文 参考訳(メタデータ) (2020-06-11T17:43:19Z) - Cross Entropy Hyperparameter Optimization for Constrained Problem
Hamiltonians Applied to QAOA [68.11912614360878]
QAOA(Quantum Approximate Optimization Algorithm)のようなハイブリッド量子古典アルゴリズムは、短期量子コンピュータを実用的に活用するための最も奨励的なアプローチの1つである。
このようなアルゴリズムは通常変分形式で実装され、古典的な最適化法と量子機械を組み合わせて最適化問題の優れた解を求める。
本研究では,クロスエントロピー法を用いてランドスケープを形作り,古典的パラメータがより容易により良いパラメータを発見でき,その結果,性能が向上することを示す。
論文 参考訳(メタデータ) (2020-03-11T13:52:41Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。