論文の概要: Problem-Size Independent Angles for a Grover-Driven Quantum Approximate
Optimization Algorithm
- arxiv url: http://arxiv.org/abs/2208.10453v1
- Date: Mon, 22 Aug 2022 17:18:25 GMT
- ステータス: 処理完了
- システム内更新日: 2023-01-30 04:50:54.594093
- Title: Problem-Size Independent Angles for a Grover-Driven Quantum Approximate
Optimization Algorithm
- Title(参考訳): グローバー駆動量子近似最適化アルゴリズムにおける問題サイズ独立角
- Authors: David Headley, Frank K. Wilhelm
- Abstract要約: 本稿では,Grover-driven,QAOA-prepared状態下でのハミルトニアンの期待値の計算をシステムサイズとは無関係に行うことができることを示す。
このような計算は、大きな問題の大きさの限界において、QAOAにおける角度のパフォーマンスと予測可能性に関する洞察を与えるのに役立つ。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The Quantum Approximate Optimization Algorithm (QAOA) requires that circuit
parameters are determined that allow one to sample from high-quality solutions
to combinatorial optimization problems. Such parameters can be obtained using
either costly outer-loop optimization procedures and repeated calls to a
quantum computer or, alternatively, via analytical means. In this work we
demonstrate that if one knows the probability density function describing how
the objective function of a problem is distributed, that the calculation of the
expectation of such a problem Hamiltonian under a Grover-driven, QAOA-prepared
state can be performed independently of system size. Such calculations can help
deliver insights into the performance of and predictability of angles in QAOA
in the limit of large problem sizes, in particular, for the number partitioning
problem.
- Abstract(参考訳): 量子近似最適化アルゴリズム(qaoa)は、高品質な解から組合せ最適化問題へのサンプルを許容する回路パラメータを決定する。
このようなパラメータは、コストのかかるアウターループ最適化手順と量子コンピュータへの繰り返し呼び出し、あるいは分析手段によって得られる。
本研究は,問題対象関数の分布を記述する確率密度関数を知っていれば,グラバー駆動のQAOA準備状態下でのハミルトニアンの期待値の計算をシステムサイズとは独立に行うことができることを示す。
このような計算は、特に数分割問題に対する大きな問題の大きさの限界において、QAOAにおける角度のパフォーマンスと予測可能性に関する洞察を与えるのに役立つ。
関連論文リスト
- An Analysis of Quantum Annealing Algorithms for Solving the Maximum Clique Problem [49.1574468325115]
我々は、QUBO問題として表されるグラフ上の最大傾きを見つける量子D波アンナーの能力を解析する。
本稿では, 相補的な最大独立集合問題に対する分解アルゴリズムと, ノード数, 傾き数, 密度, 接続率, 解サイズの他のノード数に対する比を制御するグラフ生成アルゴリズムを提案する。
論文 参考訳(メタデータ) (2024-06-11T04:40:05Z) - Performance Upper Bound of Grover-Mixer Quantum Alternating Operator Ansatz [3.5023108034606256]
QAOA(Quantum Alternating Operator Ansatz)は最適化問題を解くための量子アルゴリズムの一分野である。
特定の変種であるGrover-Mixer Quantum Alternating Operator Ansatz (GM-QAOA)は、等価な目的値を共有する状態間で均一な振幅を保証する。
GM-QAOAはサンプリング確率を2次的に向上させ,一貫した性能を維持するために,問題サイズと指数関数的にスケールする回路深度を必要とすることを示す。
論文 参考訳(メタデータ) (2024-05-06T05:47:27Z) - Probabilistic Sampling of Balanced K-Means using Adiabatic Quantum Computing [93.83016310295804]
AQCは研究関心の問題を実装でき、コンピュータビジョンタスクのための量子表現の開発に拍車をかけた。
本研究では,この情報を確率的バランスの取れたk平均クラスタリングに活用する可能性について検討する。
最適でない解を捨てる代わりに, 計算コストを少なくして, 校正後部確率を計算することを提案する。
これにより、合成タスクと実際の視覚データについて、D-Wave AQCで示すような曖昧な解とデータポイントを識別することができる。
論文 参考訳(メタデータ) (2023-10-18T17:59:45Z) - Fermionic Quantum Approximate Optimization Algorithm [11.00442581946026]
制約付き最適化問題を解くためのフェルミオン量子近似最適化アルゴリズム(FQAOA)を提案する。
FQAOAは、フェルミオン粒子数保存を用いて、QAOAを通して本質的にそれらを強制する制約問題に対処する。
制約付きハミルトニアン問題に対して、運転者ハミルトニアンを設計するための体系的なガイドラインを提供する。
論文 参考訳(メタデータ) (2023-01-25T18:36:58Z) - End-to-end resource analysis for quantum interior point methods and portfolio optimization [63.4863637315163]
問題入力から問題出力までの完全な量子回路レベルのアルゴリズム記述を提供する。
アルゴリズムの実行に必要な論理量子ビットの数と非クリフォードTゲートの量/深さを報告する。
論文 参考訳(メタデータ) (2022-11-22T18:54:48Z) - Scaling Quantum Approximate Optimization on Near-term Hardware [49.94954584453379]
我々は、様々なレベルの接続性を持つハードウェアアーキテクチャのための最適化回路により、期待されるリソース要求のスケーリングを定量化する。
問題の大きさと問題グラフの次数で指数関数的に増大する。
これらの問題は、ハードウェア接続性の向上や、より少ない回路層で高い性能を達成するQAOAの変更によって緩和される可能性がある。
論文 参考訳(メタデータ) (2022-01-06T21:02:30Z) - Parameters Fixing Strategy for Quantum Approximate Optimization
Algorithm [0.0]
そこで本稿では,QAOAをパラメータとして初期化することで,回路深度が大きければ平均で高い近似比を与える手法を提案する。
我々は3つの正則グラフやエルド・オス=ルネニグラフのようなグラフのある種のクラスにおけるマックスカット問題に対する我々の戦略をテストする。
論文 参考訳(メタデータ) (2021-08-11T15:44:16Z) - Polynomial unconstrained binary optimisation inspired by optical
simulation [52.11703556419582]
制約のないバイナリ最適化の問題を解決するために,光コヒーレントIsingマシンにヒントを得たアルゴリズムを提案する。
提案アルゴリズムを既存のPUBOアルゴリズムに対してベンチマークし,その優れた性能を観察する。
タンパク質の折り畳み問題や量子化学問題へのアルゴリズムの適用は、PUBO問題による電子構造問題の近似の欠点に光を当てる。
論文 参考訳(メタデータ) (2021-06-24T16:39:31Z) - Quantum constraint learning for quantum approximate optimization
algorithm [0.0]
本稿では,探索部分空間を厳しく制約するミキサーハミルトンを学習するための量子機械学習手法を提案する。
学習したユニタリを直接適応可能なアンサッツを使用してQAOAフレームワークにプラグインすることができる。
また,Wasserstein距離を用いた近似最適化アルゴリズムの性能を,制約なしで評価する直感的計量法を開発した。
論文 参考訳(メタデータ) (2021-05-14T11:31:14Z) - A Hybrid Quantum-Classical Heuristic to solve large-scale Integer Linear
Programs [0.4925222726301578]
本稿では、整数線形プログラムの解を見つけることができる任意の量子アルゴリズムをブランチ・アンド・プライス・アルゴリズムに統合する手法を提案する。
量子アルゴリズムの役割は、ブランチ・アンド・プライスに現れるサブプロブレムに対する整数解を見つけることである。
論文 参考訳(メタデータ) (2021-03-29T08:59:26Z) - Cross Entropy Hyperparameter Optimization for Constrained Problem
Hamiltonians Applied to QAOA [68.11912614360878]
QAOA(Quantum Approximate Optimization Algorithm)のようなハイブリッド量子古典アルゴリズムは、短期量子コンピュータを実用的に活用するための最も奨励的なアプローチの1つである。
このようなアルゴリズムは通常変分形式で実装され、古典的な最適化法と量子機械を組み合わせて最適化問題の優れた解を求める。
本研究では,クロスエントロピー法を用いてランドスケープを形作り,古典的パラメータがより容易により良いパラメータを発見でき,その結果,性能が向上することを示す。
論文 参考訳(メタデータ) (2020-03-11T13:52:41Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。