論文の概要: In-Context Retrieval-Augmented Language Models
- arxiv url: http://arxiv.org/abs/2302.00083v2
- Date: Thu, 27 Jul 2023 09:15:00 GMT
- ステータス: 処理完了
- システム内更新日: 2023-07-28 20:21:01.082585
- Title: In-Context Retrieval-Augmented Language Models
- Title(参考訳): 文脈内検索型言語モデル
- Authors: Ori Ram, Yoav Levine, Itay Dalmedigos, Dor Muhlgay, Amnon Shashua,
Kevin Leyton-Brown, Yoav Shoham
- Abstract要約: In-Context RALMは市販の汎用検索機を利用して、モデルサイズや多様なコーパスに対して驚くほど大きなLMゲインを提供する。
In-Context RALM は LM の接地頻度を増大させる可能性があると結論付けている。
- 参考スコア(独自算出の注目度): 28.23702459322163
- License: http://creativecommons.org/publicdomain/zero/1.0/
- Abstract: Retrieval-Augmented Language Modeling (RALM) methods, which condition a
language model (LM) on relevant documents from a grounding corpus during
generation, were shown to significantly improve language modeling performance.
In addition, they can mitigate the problem of factually inaccurate text
generation and provide natural source attribution mechanism. Existing RALM
approaches focus on modifying the LM architecture in order to facilitate the
incorporation of external information, significantly complicating deployment.
This paper considers a simple alternative, which we dub In-Context RALM:
leaving the LM architecture unchanged and prepending grounding documents to the
input, without any further training of the LM. We show that In-Context RALM
that builds on off-the-shelf general purpose retrievers provides surprisingly
large LM gains across model sizes and diverse corpora. We also demonstrate that
the document retrieval and ranking mechanism can be specialized to the RALM
setting to further boost performance. We conclude that In-Context RALM has
considerable potential to increase the prevalence of LM grounding, particularly
in settings where a pretrained LM must be used without modification or even via
API access.
- Abstract(参考訳): 言語モデル(LM)を生成中の接地コーパスから記述した文書に条件付けした検索言語モデリング(RALM)手法は,言語モデリング性能を著しく向上させることを示した。
さらに、事実的不正確なテキスト生成の問題を緩和し、天然資源の帰属メカニズムを提供する。
既存のRALMアプローチでは、外部情報の取り込みを容易にするため、LMアーキテクチャの変更に重点を置いている。
本稿では, LMアーキテクチャをそのままにして, LMのさらなる訓練を伴わずに, 基盤となる文書を入力に残すという, シンプルな方法を提案する。
In-Context RALMは,市販の汎用検索システム上に構築されており,モデルサイズや多種多様なコーパスに対して驚くほど大きなLMゲインを提供する。
また,文書検索とランキング機構をralm設定に特化することで,さらなる性能向上が期待できることを示す。
In-Context RALM は、特に、事前訓練された LM を変更せずに使用し、API アクセスを介して使用する必要がある設定において、LM の接地率を高める可能性があると結論付けている。
関連論文リスト
- Invar-RAG: Invariant LLM-aligned Retrieval for Better Generation [43.630437906898635]
Invar-RAGと呼ばれる2段階ファインチューニングアーキテクチャを提案する。
検索段階では、LORAに基づく表現学習を統合してLLMベースの検索器を構築する。
生成段階では、抽出した情報に基づいて回答を生成する際のLCM精度を向上させるための精細調整法が用いられる。
論文 参考訳(メタデータ) (2024-11-11T14:25:37Z) - Boosting the Capabilities of Compact Models in Low-Data Contexts with Large Language Models and Retrieval-Augmented Generation [2.9921619703037274]
本稿では,形態素解析の言語タスクにおいて,より小さなモデルの出力を補正するために,大言語モデル(LLM)を基盤とした検索拡張生成(RAG)フレームワークを提案する。
データ不足や訓練可能なパラメータの不足を補うために,言語情報を活用するとともに,LLMを通して解釈・蒸留された記述文法からの入力を許容する。
コンパクトなRAG支援モデルがデータスカース設定に極めて有効であることを示し、このタスクとターゲット言語に対する新しい最先端技術を実現する。
論文 参考訳(メタデータ) (2024-10-01T04:20:14Z) - How Good are LLMs at Relation Extraction under Low-Resource Scenario? Comprehensive Evaluation [7.151108031568037]
本稿では,3地域(中央アジア,東南アジア,中東)の低リソース言語10言語(LRL)における低リソース関係抽出データセットを構築する。
コーパスは、有効な多言語機械翻訳を使用して、オリジナルの公開可能な英語REデータセット(NYT10、FewRel、CrossRE)を翻訳することで構築される。
次に、言語パープレキシティ(PPL)を使用して、翻訳されたデータセットから低品質データをフィルタリングする。
論文 参考訳(メタデータ) (2024-06-17T03:02:04Z) - CaLM: Contrasting Large and Small Language Models to Verify Grounded Generation [76.31621715032558]
グラウンデッドジェネレーションは、言語モデル(LM)に、より信頼性が高く説明可能な応答を生成する能力を持たせることを目的としている。
本稿では,新しい検証フレームワークであるCaLMを紹介する。
我々のフレームワークは、より少ないパラメトリックメモリに依存する小さなLMを有効活用し、より大きなLMの出力を検証する。
論文 参考訳(メタデータ) (2024-06-08T06:04:55Z) - Reliable, Adaptable, and Attributable Language Models with Retrieval [144.26890121729514]
パラメトリック言語モデル(LM)は大量のWebデータに基づいて訓練されている。
幻覚、新しいデータ分布への適応の困難、妥当性の欠如など、実践的な課題に直面している。
我々は、次世代のLMとしてパラメトリックLMを置き換えるための検索拡張LMを提唱する。
論文 参考訳(メタデータ) (2024-03-05T18:22:33Z) - Unsupervised Information Refinement Training of Large Language Models for Retrieval-Augmented Generation [128.01050030936028]
InFO-RAG という情報改質訓練手法を提案する。
InFO-RAGは低コストで、様々なタスクにまたがっている。
LLaMA2の性能を平均9.39%向上させる。
論文 参考訳(メタデータ) (2024-02-28T08:24:38Z) - TEaR: Improving LLM-based Machine Translation with Systematic Self-Refinement [26.26493253161022]
大規模言語モデル(LLM)は機械翻訳(MT)において印象的な結果を得た
我々は,体系的LLMに基づく自己精製翻訳フレームワーク,textbfTEaRを紹介する。
論文 参考訳(メタデータ) (2024-02-26T07:58:12Z) - Effective Large Language Model Adaptation for Improved Grounding and Citation Generation [48.07830615309543]
本稿では,検索した文の応答を基底にして,引用を提供することにより,大規模言語モデル(LLM)の改善に焦点を当てる。
我々は、全体論的観点から基盤を改善する新しいフレームワーク AGREE を提案する。
我々のフレームワークは, LLMを調整し, その要求を自己評価し, 検索した文書に正確な引用を提供する。
論文 参考訳(メタデータ) (2023-11-16T03:22:25Z) - LMDX: Language Model-based Document Information Extraction and Localization [23.656970495804963]
大規模言語モデル(LLM)は自然言語処理(NLP)に革命をもたらした
視覚的に豊かな文書から情報を抽出する彼らの応用は、まだ成功していない。
このタスクにLLMを採用する主な障害は、LLM内にレイアウトエンコーディングがないことである。
論文 参考訳(メタデータ) (2023-09-19T22:32:56Z) - Retrieval-Pretrained Transformer: Long-range Language Modeling with Self-retrieval [51.437420003471615]
本稿では,検索拡張LMをゼロから共同で訓練するためのアーキテクチャおよび訓練手順であるRetrieval-Pretrained Transformer (RPT)を提案する。
RPTは検索品質を向上し、強いベースラインに比べてボード全体の難易度を向上する。
論文 参考訳(メタデータ) (2023-06-23T10:18:02Z) - On Language Model Integration for RNN Transducer based Speech
Recognition [49.84285563767935]
共通RNN-Tフレームワークで構成された様々なILM補正に基づくLM積分法について検討する。
ILM補正による性能改善の2つの主な理由を復号化解釈する。
また,ハイブリッド自己回帰変換器の証明を拡張することで,正確なILMトレーニングフレームワークを提案する。
論文 参考訳(メタデータ) (2021-10-13T16:30:46Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。