論文の概要: Developing Hands-on Labs for Source Code Vulnerability Detection with AI
- arxiv url: http://arxiv.org/abs/2302.00750v1
- Date: Wed, 1 Feb 2023 20:53:58 GMT
- ステータス: 処理完了
- システム内更新日: 2023-02-03 16:17:49.170949
- Title: Developing Hands-on Labs for Source Code Vulnerability Detection with AI
- Title(参考訳): AIによるソースコード脆弱性検出のためのハンズオンラボの開発
- Authors: Maryam Taeb
- Abstract要約: 我々は、将来のIT専門家をセキュアなプログラミングの習慣へと導くために、モジュールの学習と実験室への手引きを含むフレームワークを提案する。
このテーマは、ソースコードとログファイル分析ツールを使用して、セキュアなプログラミングプラクティスを学生に紹介するラボで、学習モジュールを設計することを目的としています。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: As the role of information and communication technologies gradually increases
in our lives, source code security becomes a significant issue to protect
against malicious attempts Furthermore with the advent of data-driven
techniques, there is now a growing interest in leveraging machine learning and
natural language processing as a source code assurance method to build
trustworthy systems Therefore training our future software developers to write
secure source code is in high demand In this thesis we propose a framework
including learning modules and hands on labs to guide future IT professionals
towards developing secure programming habits and mitigating source code
vulnerabilities at the early stages of the software development lifecycle In
this thesis our goal is to design learning modules with a set of hands on labs
that will introduce students to secure programming practices using source code
and log file analysis tools to predict and identify vulnerabilities In a Secure
Coding Education framework we will improve students skills and awareness on
source code vulnerabilities detection tools and mitigation techniques integrate
concepts of source code vulnerabilities from Function API and library level to
bad programming habits and practices leverage deep learning NLP and static
analysis tools for log file analysis to introduce the root cause of source code
vulnerabilities
- Abstract(参考訳): As the role of information and communication technologies gradually increases in our lives, source code security becomes a significant issue to protect against malicious attempts Furthermore with the advent of data-driven techniques, there is now a growing interest in leveraging machine learning and natural language processing as a source code assurance method to build trustworthy systems Therefore training our future software developers to write secure source code is in high demand In this thesis we propose a framework including learning modules and hands on labs to guide future IT professionals towards developing secure programming habits and mitigating source code vulnerabilities at the early stages of the software development lifecycle In this thesis our goal is to design learning modules with a set of hands on labs that will introduce students to secure programming practices using source code and log file analysis tools to predict and identify vulnerabilities In a Secure Coding Education framework we will improve students skills and awareness on source code vulnerabilities detection tools and mitigation techniques integrate concepts of source code vulnerabilities from Function API and library level to bad programming habits and practices leverage deep learning NLP and static analysis tools for log file analysis to introduce the root cause of source code vulnerabilities
関連論文リスト
- Is Your AI-Generated Code Really Safe? Evaluating Large Language Models on Secure Code Generation with CodeSecEval [20.959848710829878]
大規模言語モデル(LLM)は、コード生成とコード修復に大きな進歩をもたらした。
しかし、GitHubのようなオープンソースのリポジトリから無防備なデータを使用したトレーニングは、セキュリティ上の脆弱性を必然的に伝播するリスクを増大させる。
我々は,コードLLMのセキュリティ面を正確に評価し,拡張することを目的とした総合的研究を提案する。
論文 参考訳(メタデータ) (2024-07-02T16:13:21Z) - Agent-Driven Automatic Software Improvement [55.2480439325792]
本提案は,Large Language Models (LLMs) を利用したエージェントの展開に着目して,革新的なソリューションの探求を目的とする。
継続的学習と適応を可能にするエージェントの反復的性質は、コード生成における一般的な課題を克服するのに役立ちます。
我々は,これらのシステムにおける反復的なフィードバックを用いて,エージェントの基盤となるLLMをさらに微調整し,自動化されたソフトウェア改善のタスクに整合性を持たせることを目指している。
論文 参考訳(メタデータ) (2024-06-24T15:45:22Z) - A Survey of Third-Party Library Security Research in Application Software [3.280510821619164]
サードパーティのライブラリが広く使われるようになると、関連するセキュリティリスクと潜在的な脆弱性がますます顕在化している。
悪意のある攻撃者は、これらの脆弱性を利用してシステムに侵入したり、不正な操作を行ったり、機密情報を盗んだりすることができる。
ソフトウェアにおけるサードパーティのライブラリの研究は、この増大するセキュリティ問題に対処する上で、最重要課題となる。
論文 参考訳(メタデータ) (2024-04-27T16:35:02Z) - Causative Insights into Open Source Software Security using Large
Language Code Embeddings and Semantic Vulnerability Graph [3.623199159688412]
オープンソースソフトウェア(OSS)の脆弱性は、不正アクセス、データ漏洩、ネットワーク障害、プライバシー侵害を引き起こす可能性がある。
最近のディープラーニング技術は、ソースコードの脆弱性を特定し、ローカライズする上で大きな可能性を示しています。
本研究は,従来の方法に比べてコード修復能力が24%向上したことを示す。
論文 参考訳(メタデータ) (2024-01-13T10:33:22Z) - Deep Learning for Code Intelligence: Survey, Benchmark and Toolkit [63.82016263181941]
コードインテリジェンスは、機械学習技術を活用して、広範なコードコーパスから知識を抽出する。
現在、コードインテリジェンスに重点を置く研究コミュニティは活発です。
論文 参考訳(メタデータ) (2023-12-30T17:48:37Z) - Software Repositories and Machine Learning Research in Cyber Security [0.0]
堅牢なサイバーセキュリティ防衛の統合は、ソフトウェア開発のあらゆる段階において不可欠になっている。
ソフトウェア要件プロセスにおけるこれらの初期段階の脆弱性の検出にトピックモデリングと機械学習を活用する試みが実施されている。
論文 参考訳(メタデータ) (2023-11-01T17:46:07Z) - Enhancing Large Language Models for Secure Code Generation: A
Dataset-driven Study on Vulnerability Mitigation [24.668682498171776]
大規模言語モデル(LLM)はコード生成に大きな進歩をもたらし、初心者と経験豊富な開発者の両方に恩恵を与えている。
しかし、GitHubのようなオープンソースのリポジトリから無防備なデータを使用したトレーニングは、セキュリティ上の脆弱性を不注意に伝播するリスクをもたらす。
本稿では,ソフトウェアセキュリティの観点からのLLMの評価と拡張に焦点をあてた総合的研究について述べる。
論文 参考訳(メタデータ) (2023-10-25T00:32:56Z) - CodeLMSec Benchmark: Systematically Evaluating and Finding Security
Vulnerabilities in Black-Box Code Language Models [58.27254444280376]
自動コード生成のための大規模言語モデル(LLM)は、いくつかのプログラミングタスクにおいてブレークスルーを達成した。
これらのモデルのトレーニングデータは、通常、インターネット(例えばオープンソースのリポジトリから)から収集され、障害やセキュリティ上の脆弱性を含む可能性がある。
この不衛生なトレーニングデータは、言語モデルにこれらの脆弱性を学習させ、コード生成手順中にそれを伝播させる可能性がある。
論文 参考訳(メタデータ) (2023-02-08T11:54:07Z) - VELVET: a noVel Ensemble Learning approach to automatically locate
VulnErable sTatements [62.93814803258067]
本稿では,ソースコード中の脆弱な文を見つけるための新しいアンサンブル学習手法であるVELVETを提案する。
我々のモデルは、グラフベースとシーケンスベースニューラルネットワークを組み合わせて、プログラムグラフの局所的およびグローバル的コンテキストを捕捉する。
VELVETは、合成データと実世界のデータに対して、それぞれ99.6%と43.6%の精度を達成している。
論文 参考訳(メタデータ) (2021-12-20T22:45:27Z) - Technology Readiness Levels for Machine Learning Systems [107.56979560568232]
機械学習システムの開発とデプロイは、現代のツールで簡単に実行できますが、プロセスは一般的に急ぎ、エンドツーエンドです。
私たちは、機械学習の開発と展開のための実証済みのシステムエンジニアリングアプローチを開発しました。
当社の「機械学習技術準備レベル」フレームワークは、堅牢で信頼性が高く、責任あるシステムを確保するための原則的なプロセスを定義します。
論文 参考訳(メタデータ) (2021-01-11T15:54:48Z) - Dos and Don'ts of Machine Learning in Computer Security [74.1816306998445]
大きな可能性にもかかわらず、セキュリティにおける機械学習は、パフォーマンスを損なう微妙な落とし穴を引き起こす傾向がある。
我々は,学習ベースのセキュリティシステムの設計,実装,評価において共通の落とし穴を特定する。
我々は,落とし穴の回避や軽減を支援するために,研究者を支援するための実用的な勧告を提案する。
論文 参考訳(メタデータ) (2020-10-19T13:09:31Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。