Incorporating Taylor Series and Recursive Structure in Neural Networks
for Time Series Prediction
- URL: http://arxiv.org/abs/2402.06441v1
- Date: Fri, 9 Feb 2024 14:34:28 GMT
- Title: Incorporating Taylor Series and Recursive Structure in Neural Networks
for Time Series Prediction
- Authors: Jarrod Mau and Kevin Moon
- Abstract summary: Time series analysis is relevant in various disciplines such as physics, biology, chemistry, and finance.
We present a novel neural network architecture that integrates elements from ResNet structures, while introducing the innovative Taylor series framework.
- Score: 0.29008108937701327
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Time series analysis is relevant in various disciplines such as physics,
biology, chemistry, and finance. In this paper, we present a novel neural
network architecture that integrates elements from ResNet structures, while
introducing the innovative incorporation of the Taylor series framework. This
approach demonstrates notable enhancements in test accuracy across many of the
baseline datasets investigated. Furthermore, we extend our method to
incorporate a recursive step, which leads to even further improvements in test
accuracy. Our findings underscore the potential of our proposed model to
significantly advance time series analysis methodologies, offering promising
avenues for future research and application.
Related papers
- TSI: A Multi-View Representation Learning Approach for Time Series Forecasting [29.05140751690699]
This study introduces a novel multi-view approach for time series forecasting.
It integrates trend and seasonal representations with an Independent Component Analysis (ICA)-based representation.
This approach offers a holistic understanding of time series data, going beyond traditional models that often miss nuanced, nonlinear relationships.
arXiv Detail & Related papers (2024-09-30T02:11:57Z) - Graph Deep Learning for Time Series Forecasting [28.30604130617646]
Graph-based deep learning methods have become popular tools to process collections of correlated time series.
This paper aims to introduce a comprehensive methodological framework that formalizes the forecasting problem and provides design principles for graph-based predictive models and methods to assess their performance.
arXiv Detail & Related papers (2023-10-24T16:26:38Z) - TACTiS-2: Better, Faster, Simpler Attentional Copulas for Multivariate Time Series [57.4208255711412]
Building on copula theory, we propose a simplified objective for the recently-introduced transformer-based attentional copulas (TACTiS)
We show that the resulting model has significantly better training dynamics and achieves state-of-the-art performance across diverse real-world forecasting tasks.
arXiv Detail & Related papers (2023-10-02T16:45:19Z) - A Survey on Deep Learning based Time Series Analysis with Frequency
Transformation [74.3919960186696]
Frequency transformation (FT) has been increasingly incorporated into deep learning models to enhance state-of-the-art accuracy and efficiency in time series analysis.
Despite the growing attention and the proliferation of research in this emerging field, there is currently a lack of a systematic review and in-depth analysis of deep learning-based time series models with FT.
We present a comprehensive review that systematically investigates and summarizes the recent research advancements in deep learning-based time series analysis with FT.
arXiv Detail & Related papers (2023-02-04T14:33:07Z) - Graph-Survival: A Survival Analysis Framework for Machine Learning on
Temporal Networks [14.430635608400982]
We propose a framework for designing generative models for continuous time temporal networks.
We propose a fitting method for models within this framework, and an algorithm for simulating new temporal networks having desired properties.
arXiv Detail & Related papers (2022-03-14T16:40:57Z) - Novel Features for Time Series Analysis: A Complex Networks Approach [62.997667081978825]
Time series data are ubiquitous in several domains as climate, economics and health care.
Recent conceptual approach relies on time series mapping to complex networks.
Network analysis can be used to characterize different types of time series.
arXiv Detail & Related papers (2021-10-11T13:46:28Z) - Randomized Neural Networks for Forecasting Time Series with Multiple
Seasonality [0.0]
This work contributes to the development of neural forecasting models with novel randomization-based learning methods.
A pattern-based representation of time series makes the proposed approach useful for forecasting time series with multiple seasonality.
arXiv Detail & Related papers (2021-07-04T18:39:27Z) - PredRNN: A Recurrent Neural Network for Spatiotemporal Predictive
Learning [109.84770951839289]
We present PredRNN, a new recurrent network for learning visual dynamics from historical context.
We show that our approach obtains highly competitive results on three standard datasets.
arXiv Detail & Related papers (2021-03-17T08:28:30Z) - Supporting Optimal Phase Space Reconstructions Using Neural Network
Architecture for Time Series Modeling [68.8204255655161]
We propose an artificial neural network with a mechanism to implicitly learn the phase spaces properties.
Our approach is either as competitive as or better than most state-of-the-art strategies.
arXiv Detail & Related papers (2020-06-19T21:04:47Z) - Meta-learning framework with applications to zero-shot time-series
forecasting [82.61728230984099]
This work provides positive evidence using a broad meta-learning framework.
residual connections act as a meta-learning adaptation mechanism.
We show that it is viable to train a neural network on a source TS dataset and deploy it on a different target TS dataset without retraining.
arXiv Detail & Related papers (2020-02-07T16:39:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.