論文の概要: Predicting Development of Chronic Obstructive Pulmonary Disease and its
Risk Factor Analysis
- arxiv url: http://arxiv.org/abs/2302.03137v1
- Date: Mon, 6 Feb 2023 21:50:34 GMT
- ステータス: 処理完了
- システム内更新日: 2023-02-08 18:02:50.797322
- Title: Predicting Development of Chronic Obstructive Pulmonary Disease and its
Risk Factor Analysis
- Title(参考訳): 慢性閉塞性肺疾患の発症予測とその危険因子分析
- Authors: Soojin Lee, Ingu Sean Lee, Samuel Kim
- Abstract要約: 慢性閉塞性肺疾患 (COPD) は, 社会的負担の高い非可逆性気道閉塞である。
社会デマトグラフィー、臨床、遺伝データを統合した機械学習モデルを適用して、COPDの発症を予測することによって、COPDのリスク要因を特定することを目的とする。
- 参考スコア(独自算出の注目度): 0.9146620606615891
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Chronic Obstructive Pulmonary Disease (COPD) is an irreversible airway
obstruction with a high societal burden. Although smoking is known to be the
biggest risk factor, additional components need to be considered. In this
study, we aim to identify COPD risk factors by applying machine learning models
that integrate sociodemographic, clinical, and genetic data to predict COPD
development.
- Abstract(参考訳): 慢性閉塞性肺疾患 (COPD) は, 社会的負担の高い非可逆性気道閉塞である。
喫煙は最大のリスク要因として知られているが、追加の要素を考慮する必要がある。
本研究では, 社会疫学, 臨床, 遺伝的データを統合した機械学習モデルを用いて, copd 開発を予測することで, copd のリスク因子を同定することを目的とした。
関連論文リスト
- Integrated Machine Learning and Survival Analysis Modeling for Enhanced Chronic Kidney Disease Risk Stratification [0.0]
慢性腎疾患(CKD)は公衆衛生上の重要な課題であり、早期に発見・管理されていない場合、しばしばエンドステージ腎疾患(ESRD)へと進行する。
本稿では,機械学習技術と古典統計モデルを組み合わせて,CKDの進行をモデル化する手法を提案する。
論文 参考訳(メタデータ) (2024-11-16T09:22:06Z) - HACSurv: A Hierarchical Copula-based Approach for Survival Analysis with Dependent Competing Risks [51.95824566163554]
HACSurvは、競合するリスクを持つデータから構造や原因特異的生存関数を学習する生存分析手法である。
リスクと検閲の間の依存関係をキャプチャすることで、HACSurvはより良い生存予測を実現する。
論文 参考訳(メタデータ) (2024-10-19T18:52:18Z) - Petal-X: Human-Centered Visual Explanations to Improve Cardiovascular Risk Communication [1.4613744540785565]
本研究は臨床医が共有した意思決定を支援する新しいツールであるPetal-Xの設計と実装について述べる。
Petal-Xは、新しいビジュアライゼーション、Petal Product Plots、そしてSCORE2のテーラーメイドのグローバルサロゲートモデルに依存している。
論文 参考訳(メタデータ) (2024-06-26T18:48:50Z) - Deep Learning for Detecting and Early Predicting Chronic Obstructive Pulmonary Disease from Spirogram Time Series [32.3112419424864]
慢性閉塞性肺疾患(慢性閉塞性肺疾患、COPD)は、慢性肺疾患である。
今後のCOPDリスクを早期に予測するために,ディープラーニングに基づくDeepSpiroを提案する。
論文 参考訳(メタデータ) (2024-05-06T07:48:34Z) - Feasibility of Identifying Factors Related to Alzheimer's Disease and
Related Dementia in Real-World Data [56.7069469207376]
537例から10項目で477の危険因子を抽出した。
AD/ADRDの遺伝子検査は、まだ一般的ではなく、構造化EHRと非構造化EHRの両方で文書化されていない。
AD/ADRDリスクファクタに関する継続的な研究を考えると、NLP法による文献マイニングは、私たちの知識マップを自動的に更新するソリューションを提供する。
論文 参考訳(メタデータ) (2024-02-03T18:17:19Z) - Interpretable Survival Analysis for Heart Failure Risk Prediction [50.64739292687567]
現状の生存モデルと解釈可能かつ競合する新しい生存分析パイプラインを提案する。
我々のパイプラインは最先端のパフォーマンスを達成し、心不全のリスク要因に関する興味深い新しい洞察を提供する。
論文 参考訳(メタデータ) (2023-10-24T02:56:05Z) - Revisiting Computer-Aided Tuberculosis Diagnosis [56.80999479735375]
結核(TB)は世界的な健康上の脅威であり、毎年何百万人もの死者を出している。
深層学習を用いたコンピュータ支援結核診断 (CTD) は有望であるが, 限られたトレーニングデータによって進行が妨げられている。
結核X線(TBX11K)データセットは11,200個の胸部X線(CXR)画像とそれに対応するTB領域のバウンディングボックスアノテーションを含む。
このデータセットは、高品質なCTDのための洗練された検出器のトレーニングを可能にする。
論文 参考訳(メタデータ) (2023-07-06T08:27:48Z) - Instrumental Variable Learning for Chest X-ray Classification [52.68170685918908]
本稿では,素因果関係を排除し,正確な因果表現を得るための解釈可能な機器変数(IV)学習フレームワークを提案する。
提案手法の性能はMIMIC-CXR,NIH ChestX-ray 14,CheXpertデータセットを用いて実証した。
論文 参考訳(メタデータ) (2023-05-20T03:12:23Z) - Penalized Deep Partially Linear Cox Models with Application to CT Scans
of Lung Cancer Patients [42.09584755334577]
肺がんは世界中のがん死亡の原因であり、効果的な治療法を設計するための死亡リスクを理解することの重要性を強調している。
NLST(National Lung Screening Trial)は、肺がん患者の死亡リスクを定量化するために、CTテクスチャ解析を用いている。
本稿では,SCADペナルティを組み込んで重要なテクスチャ特徴を抽出し,深層ニューラルネットワークを用いてモデルの非パラメトリック成分を推定する,Pentalized Deep partially Linear Cox Model (Penalized DPLC)を提案する。
論文 参考訳(メタデータ) (2023-03-09T15:38:16Z) - SurvLatent ODE : A Neural ODE based time-to-event model with competing
risks for longitudinal data improves cancer-associated Deep Vein Thrombosis
(DVT) prediction [68.8204255655161]
本稿では,不規則なサンプルデータの下で潜在表現をパラメータ化する生成時間対イベントモデルSurvLatent ODEを提案する。
そこで,本モデルでは,事象特異的ハザード関数の形状を指定せずに,複数の競合イベントの生存時間を柔軟に推定する。
SurvLatent ODEは、DVTリスクグループを成層化するために、現在の臨床標準であるKhorana Riskスコアより優れている。
論文 参考訳(メタデータ) (2022-04-20T17:28:08Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。