論文の概要: Identification of Power System Oscillation Modes using Blind Source
Separation based on Copula Statistic
- arxiv url: http://arxiv.org/abs/2302.03633v1
- Date: Tue, 7 Feb 2023 17:38:05 GMT
- ステータス: 処理完了
- システム内更新日: 2023-02-08 15:30:13.005537
- Title: Identification of Power System Oscillation Modes using Blind Source
Separation based on Copula Statistic
- Title(参考訳): copula統計に基づくブラインド音源分離を用いた電力系統発振モードの同定
- Authors: Pooja Algikar, Lamine Mili, Mohsen Ben Hassine, Somayeh Yarahmadi,
Almuatazbellah (Muataz) Boker
- Abstract要約: 再生可能エネルギー資源が大量に浸透する電力システムのダイナミクスは、より非線形になってきている。
適切な予防的または矯正的制御行動を開始するために障害を受けるとき、振動の動的モードを正確に識別することが重要である。
モーダル解析においてこれらの非線形力学に対処するために,コプラ統計に基づく高次ブラインドソース同定(HOBI)アルゴリズムを提案する。
- 参考スコア(独自算出の注目度): 1.8741805956888702
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: The dynamics of a power system with large penetration of renewable energy
resources are becoming more nonlinear due to the intermittence of these
resources and the switching of their power electronic devices. Therefore, it is
crucial to accurately identify the dynamical modes of oscillation of such a
power system when it is subject to disturbances to initiate appropriate
preventive or corrective control actions. In this paper, we propose a
high-order blind source identification (HOBI) algorithm based on the copula
statistic to address these non-linear dynamics in modal analysis. The method
combined with Hilbert transform (HOBI-HT) and iteration procedure (HOBMI) can
identify all the modes as well as the model order from the observation signals
obtained from the number of channels as low as one. We access the performance
of the proposed method on numerical simulation signals and recorded data from a
simulation of time domain analysis on the classical 11-Bus 4-Machine test
system. Our simulation results outperform the state-of-the-art method in
accuracy and effectiveness.
- Abstract(参考訳): 再生可能エネルギー資源を多用する電力システムのダイナミクスは、これらの資源の断続性と電力電子機器のスイッチングにより、より非線形になってきている。
したがって、適切な予防的・是正的制御行動を開始するために外乱を受ける場合に、当該電力系統の振動の動的モードを正確に特定することが重要である。
本稿では,コプラ統計に基づく高次ブラインドソース同定(hobi)アルゴリズムを提案する。
Hilbert変換(HOBI-HT)と反復手順(HOBMI)を組み合わせることで、チャネル数から得られる観測信号から、すべてのモードとモデル順序を1つに識別することができる。
従来の11バス4マシンテストシステムにおける時間領域解析のシミュレーションから,数値シミュレーション信号と記録データに対する提案手法の性能にアクセスした。
シミュレーションの結果は,最先端の手法を精度と有効性で上回っている。
関連論文リスト
- A method for identifying causality in the response of nonlinear dynamical systems [0.0]
データ駆動モデルを構築するには、システムの入力と出力を実験的に測定する必要がある。
モデル内の不正確さがエラーやノイズのモデル化に起因するかどうかを判断することは困難である。
本稿では,入力出力データの因果成分を,出力雑音の存在下でのシステム計測から同定する手法を提案する。
論文 参考訳(メタデータ) (2024-09-26T14:19:07Z) - A Unified Approach for Learning the Dynamics of Power System Generators and Inverter-based Resources [12.723995633698514]
再生可能エネルギーの統合と電気化のためのインバータベースの資源(IBR)は、電力系統の動的解析に大きく挑戦する。
同期ジェネレータ(SG)とIRBの両方を考慮するため、この研究は個々の動的コンポーネントのモデルを学ぶためのアプローチを示す。
論文 参考訳(メタデータ) (2024-09-22T14:07:10Z) - Low-Frequency Load Identification using CNN-BiLSTM Attention Mechanism [0.0]
非侵入負荷モニタリング(Non-Inrusive Load Monitoring, NILM)は、効率的な電力消費管理のための確立された技術である。
本稿では,畳み込みニューラルネットワーク(CNN)と双方向長短期記憶(BILSTM)を組み合わせたハイブリッド学習手法を提案する。
CNN-BILSTMモデルは、時間的(時間的)と空間的(位置的)の両方の特徴を抽出し、アプライアンスレベルでのエネルギー消費パターンを正確に識別することができる。
論文 参考訳(メタデータ) (2023-11-14T21:02:27Z) - Capturing dynamical correlations using implicit neural representations [85.66456606776552]
実験データから未知のパラメータを復元するために、モデルハミルトンのシミュレーションデータを模倣するために訓練されたニューラルネットワークと自動微分を組み合わせた人工知能フレームワークを開発する。
そこで本研究では, 実時間から多次元散乱データに適用可能な微分可能なモデルを1回だけ構築し, 訓練する能力について述べる。
論文 参考訳(メタデータ) (2023-04-08T07:55:36Z) - Online Real-time Learning of Dynamical Systems from Noisy Streaming
Data: A Koopman Operator Approach [0.0]
ノイズの多い時系列データから動的システムのオンラインリアルタイム学習のための新しいアルゴリズムを提案する。
提案アルゴリズムはロバスト・クープマン演算子を用いて測定ノイズの影響を緩和する。
論文 参考訳(メタデータ) (2022-12-10T10:21:45Z) - Formal Controller Synthesis for Markov Jump Linear Systems with
Uncertain Dynamics [64.72260320446158]
マルコフジャンプ線形系に対する制御器の合成法を提案する。
本手法は,MJLSの離散(モードジャンピング)と連続(確率線形)の両方の挙動を捉える有限状態抽象化に基づいている。
本手法を複数の現実的なベンチマーク問題,特に温度制御と航空機の配送問題に適用する。
論文 参考訳(メタデータ) (2022-12-01T17:36:30Z) - A Priori Denoising Strategies for Sparse Identification of Nonlinear
Dynamical Systems: A Comparative Study [68.8204255655161]
本研究では, 局所的およびグローバルな平滑化手法の性能と, 状態測定値の偏差について検討・比較する。
一般に,測度データセット全体を用いたグローバルな手法は,局所点の周辺に隣接するデータサブセットを用いる局所的手法よりも優れていることを示す。
論文 参考訳(メタデータ) (2022-01-29T23:31:25Z) - Data-driven Small-signal Modeling for Converter-based Power Systems [7.501426386641255]
本稿では,コンバータを用いた電力系統の研究に有用な,データ駆動型小型信号ベースモデルを導出するための完全な手順を詳述する。
モデルを計算するために、単一DTとアンサンブルDTとスプライン回帰の両方を用いて決定木回帰(DT)を用いた。
モデルの適用可能性について論じ、さらなる電力系統小信号関連研究において、開発モデルの可能性を強調した。
論文 参考訳(メタデータ) (2021-08-30T08:10:45Z) - Dynamic Mode Decomposition in Adaptive Mesh Refinement and Coarsening
Simulations [58.720142291102135]
動的モード分解(DMD)はコヒーレントなスキームを抽出する強力なデータ駆動方式である。
本稿では,異なるメッシュトポロジと次元の観測からDMDを抽出する戦略を提案する。
論文 参考訳(メタデータ) (2021-04-28T22:14:25Z) - Stochastically forced ensemble dynamic mode decomposition for
forecasting and analysis of near-periodic systems [65.44033635330604]
本稿では,観測力学を強制線形系としてモデル化した新しい負荷予測手法を提案する。
固有線型力学の利用は、解釈可能性やパーシモニーの観点から、多くの望ましい性質を提供することを示す。
電力グリッドからの負荷データを用いたテストケースの結果が提示される。
論文 参考訳(メタデータ) (2020-10-08T20:25:52Z) - Data-Driven Symbol Detection via Model-Based Machine Learning [117.58188185409904]
機械学習(ML)とモデルベースアルゴリズムを組み合わせた,検出設計のシンボル化を目的とした,データ駆動型フレームワークについてレビューする。
このハイブリッドアプローチでは、よく知られたチャネルモデルに基づくアルゴリズムをMLベースのアルゴリズムで拡張し、チャネルモデル依存性を除去する。
提案手法は, 正確なチャネル入出力統計関係を知らなくても, モデルベースアルゴリズムのほぼ最適性能が得られることを示す。
論文 参考訳(メタデータ) (2020-02-14T06:58:27Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。