論文の概要: DDeMON: Ontology-based function prediction by Deep Learning from Dynamic
Multiplex Networks
- arxiv url: http://arxiv.org/abs/2302.03907v1
- Date: Wed, 8 Feb 2023 06:53:02 GMT
- ステータス: 処理完了
- システム内更新日: 2023-02-09 17:04:25.985445
- Title: DDeMON: Ontology-based function prediction by Deep Learning from Dynamic
Multiplex Networks
- Title(参考訳): ddemon:動的多重ネットワークからのディープラーニングによるオントロジに基づく関数予測
- Authors: Jan Kralj, Bla\v{z} \v{S}krlj, \v{Z}iva Ram\v{s}ak, Nada Lavra\v{c},
Kristina Gruden
- Abstract要約: 本研究の目的は、遺伝子発現の時間的ダイナミクスとシステムのレベル情報の融合がいかにして新しい遺伝子機能を予測するかを検討することである。
時間依存型多スケール生体情報を用いた関数アノテーションのスケーラブルなシステムレベルの推論手法であるDDeMONを提案する。
- 参考スコア(独自算出の注目度): 0.7349727826230864
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Biological systems can be studied at multiple levels of information,
including gene, protein, RNA and different interaction networks levels. The
goal of this work is to explore how the fusion of systems' level information
with temporal dynamics of gene expression can be used in combination with
non-linear approximation power of deep neural networks to predict novel gene
functions in a non-model organism potato \emph{Solanum tuberosum}. We propose
DDeMON (Dynamic Deep learning from temporal Multiplex Ontology-annotated
Networks), an approach for scalable, systems-level inference of function
annotation using time-dependent multiscale biological information. The proposed
method, which is capable of considering billions of potential links between the
genes of interest, was applied on experimental gene expression data and the
background knowledge network to reliably classify genes with unknown function
into five different functional ontology categories, linked to the experimental
data set. Predicted novel functions of genes were validated using extensive
protein domain search approach.
- Abstract(参考訳): 生物学的システムは、遺伝子、タンパク質、rnaおよび異なる相互作用ネットワークレベルを含む様々なレベルの情報で研究することができる。
本研究の目的は, システムレベルの情報と遺伝子発現の時間的ダイナミクスの融合が, 深層ニューラルネットワークの非線形近似と組み合わせることで, 非モデル生物ジャガイモ \emph{Solanum tuberosum} の新規遺伝子機能を予測することにある。
DDeMON(Dynamic Deep Learning from temporal Multiplex Ontology- Annotated Networks)は,時間依存型多スケール生体情報を用いた関数アノテーションのスケーラブルでシステムレベルの推論手法である。
対象遺伝子間の数十億の潜在的なリンクを考慮し,未知の機能を持つ遺伝子を,実験データセットに関連付けられた5種類の機能オントロジーカテゴリに確実に分類するために,実験的遺伝子発現データと背景知識ネットワークに適用した。
広範囲なタンパク質ドメイン探索手法を用いて, 遺伝子の新規機能の予測を行った。
関連論文リスト
- Inference of dynamical gene regulatory networks from single-cell data
with physics informed neural networks [0.0]
本稿では,物理インフォームドニューラルネットワーク(PINN)を用いて,予測的,動的 GRN のパラメータを推定する方法について述べる。
具体的には, 分岐挙動を示すGRNについて検討し, 細胞分化をモデル化する。
論文 参考訳(メタデータ) (2024-01-14T21:43:10Z) - An Association Test Based on Kernel-Based Neural Networks for Complex
Genetic Association Analysis [0.8221435109014762]
従来のニューラルネットワークと線形混合モデルの強度を相乗化するカーネルベースニューラルネットワークモデル(KNN)を開発した。
MINQUEに基づく遺伝子変異と表現型との結合性を評価する試験。
線形および非線形/非付加的遺伝子効果の評価と解釈のための2つの追加試験。
論文 参考訳(メタデータ) (2023-12-06T05:02:28Z) - Single-Cell Deep Clustering Method Assisted by Exogenous Gene
Information: A Novel Approach to Identifying Cell Types [50.55583697209676]
我々は,細胞間のトポロジ的特徴を効率的に捉えるために,注目度の高いグラフオートエンコーダを開発した。
クラスタリング過程において,両情報の集合を統合し,細胞と遺伝子の特徴を再構成し,識別的表現を生成する。
本研究は、細胞の特徴と分布に関する知見を高め、疾患の早期診断と治療の基礎となる。
論文 参考訳(メタデータ) (2023-11-28T09:14:55Z) - GENER: A Parallel Layer Deep Learning Network To Detect Gene-Gene
Interactions From Gene Expression Data [0.7660368798066375]
本稿では,遺伝子発現データを用いた遺伝子関係の同定専用に設計された並列層深層学習ネットワークを提案する。
本モデルでは,BioGRIDとDREAM5の組み合わせによる平均AUROCスコア0.834を達成し,遺伝子間相互作用を予測する競合手法よりも優れていた。
論文 参考訳(メタデータ) (2023-10-05T15:45:53Z) - MuSe-GNN: Learning Unified Gene Representation From Multimodal
Biological Graph Data [22.938437500266847]
マルチモーダル類似性学習グラフニューラルネットワークという新しいモデルを提案する。
マルチモーダル機械学習とディープグラフニューラルネットワークを組み合わせて、単一セルシークエンシングと空間転写データから遺伝子発現を学習する。
本モデルでは, 遺伝子機能, 組織機能, 疾患, 種進化の解析のために, 統合された遺伝子表現を効率よく生成する。
論文 参考訳(メタデータ) (2023-09-29T13:33:53Z) - Unsupervised ensemble-based phenotyping helps enhance the
discoverability of genes related to heart morphology [57.25098075813054]
我々はUn Phenotype Ensemblesという名の遺伝子発見のための新しいフレームワークを提案する。
教師なしの方法で学習された表現型のセットをプールすることで、冗長だが非常に表現性の高い表現を構築する。
これらの表現型は、(GWAS)を介して分析され、高い自信と安定した関連のみを保持する。
論文 参考訳(メタデータ) (2023-01-07T18:36:44Z) - Predicting Biomedical Interactions with Probabilistic Model Selection
for Graph Neural Networks [5.156812030122437]
現在の生物学的ネットワークは、ノイズ、スパース、不完全であり、そのような相互作用の実験的同定には時間と費用がかかる。
ディープグラフニューラルネットワークは、グラフ構造データモデリングの有効性を示し、バイオメディカル相互作用予測において優れた性能を達成した。
提案手法により,グラフ畳み込みネットワークは,その深度を動的に適応し,対話数の増加に対応することができる。
論文 参考訳(メタデータ) (2022-11-22T20:44:28Z) - Data-driven emergence of convolutional structure in neural networks [83.4920717252233]
識別タスクを解くニューラルネットワークが、入力から直接畳み込み構造を学習できることを示す。
データモデルを慎重に設計することにより、このパターンの出現は、入力の非ガウス的、高次局所構造によって引き起こされることを示す。
論文 参考訳(メタデータ) (2022-02-01T17:11:13Z) - Self-Supervised Graph Representation Learning for Neuronal Morphologies [75.38832711445421]
ラベルのないデータセットから3次元神経形態の低次元表現を学習するためのデータ駆動型アプローチであるGraphDINOを提案する。
2つの異なる種と複数の脳領域において、この方法では、専門家による手動の特徴に基づく分類と同程度に形態学的細胞型クラスタリングが得られることを示す。
提案手法は,大規模データセットにおける新しい形態的特徴や細胞型の発見を可能にする可能性がある。
論文 参考訳(メタデータ) (2021-12-23T12:17:47Z) - Towards Interaction Detection Using Topological Analysis on Neural
Networks [55.74562391439507]
ニューラルネットワークでは、あらゆる相互作用する特徴は共通の隠蔽ユニットとの強い重み付けの接続に従う必要がある。
本稿では, 永続的ホモロジーの理論に基づいて, 相互作用強度を定量化するための新しい尺度を提案する。
PID(Persistence Interaction Detection)アルゴリズムを開発した。
論文 参考訳(メタデータ) (2020-10-25T02:15:24Z) - Complexity-based speciation and genotype representation for
neuroevolution [81.21462458089142]
本稿では、進化するネットワークを隠されたニューロンの数に基づいて種に分類する神経進化の種分化原理を提案する。
提案された種分化原理は、種および生態系全体における多様性の促進と保存を目的として設計されたいくつかの技術で採用されている。
論文 参考訳(メタデータ) (2020-10-11T06:26:56Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。