論文の概要: Learning-based Online Optimization for Autonomous Mobility-on-Demand
Fleet Control
- arxiv url: http://arxiv.org/abs/2302.03963v1
- Date: Wed, 8 Feb 2023 09:40:30 GMT
- ステータス: 処理完了
- システム内更新日: 2023-02-09 16:46:29.336660
- Title: Learning-based Online Optimization for Autonomous Mobility-on-Demand
Fleet Control
- Title(参考訳): 自律移動制御のための学習に基づくオンライン最適化
- Authors: Kai Jungel, Axel Parmentier, Maximilian Schiffer, Thibaut Vidal
- Abstract要約: 自律移動オンデマンドシステムのためのオンライン制御アルゴリズムについて検討する。
我々は、オンラインディスパッチとリバランスポリシーを学習する、新しいハイブリッド強化機械学習パイプラインを開発した。
提案手法は,最先端の欲求とモデル予測制御のアプローチより優れていることを示す。
- 参考スコア(独自算出の注目度): 11.148908941613609
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Autonomous mobility-on-demand systems are a viable alternative to mitigate
many transportation-related externalities in cities, such as rising vehicle
volumes in urban areas and transportation-related pollution. However, the
success of these systems heavily depends on efficient and effective fleet
control strategies. In this context, we study online control algorithms for
autonomous mobility-on-demand systems and develop a novel hybrid combinatorial
optimization enriched machine learning pipeline which learns online dispatching
and rebalancing policies from optimal full-information solutions. We test our
hybrid pipeline on large-scale real-world scenarios with different vehicle
fleet sizes and various request densities. We show that our approach
outperforms state-of-the-art greedy, and model-predictive control approaches
with respect to various KPIs, e.g., by up to 17.1% and on average by 6.3% in
terms of realized profit.
- Abstract(参考訳): 自律型モビリティ・オン・デマンドシステムは、都市部における車両の量の増加や交通関連汚染など、多くの交通関連外部性を緩和する手段として、有効な選択肢である。
しかし、これらのシステムの成功は、効率的かつ効果的な艦隊統制戦略に大きく依存している。
本研究では,自律移動オンデマンドシステムのためのオンライン制御アルゴリズムについて検討し,最適全情報ソリューションからオンラインディスパッチとリバランスポリシを学習するハイブリッド組合せ最適化強化機械学習パイプラインを開発した。
我々は,車両群の大きさや要求密度の異なる大規模実世界のシナリオで,ハイブリッドパイプラインをテストする。
提案手法は, 様々なKPI(例えば, 最大17.1%, 平均6.3%)に対して, 最先端の欲求とモデル予測制御のアプローチより優れていることを示す。
関連論文リスト
- Routing and Scheduling Optimization for Urban Air Mobility Fleet Management using Quantum Annealing [1.2145532233226684]
都市部における高密度航空交通の効率的な管理は、安全かつ効果的な運用を確保するために重要である。
都市部で運用されている大型UAM車両の需要に対応するためのルーティングとスケジューリングの枠組みを提案する。
本手法はシンガポールの空域に適した交通管理シミュレータを用いて検証した。
論文 参考訳(メタデータ) (2024-10-15T03:27:52Z) - Learning Robust Autonomous Navigation and Locomotion for Wheeled-Legged Robots [50.02055068660255]
都市環境のナビゲーションは、ロボットにとってユニークな課題であり、移動とナビゲーションのための革新的なソリューションを必要としている。
本研究は, 適応移動制御, 移動対応ローカルナビゲーション計画, 市内の大規模経路計画を含む, 完全に統合されたシステムを導入する。
モデルフリー強化学習(RL)技術と特権学習を用いて,多目的移動制御系を開発した。
私たちのコントローラーは大規模な都市航法システムに統合され、スイスのチューリッヒとスペインのセビリアで自律的、キロメートル規模の航法ミッションによって検証されます。
論文 参考訳(メタデータ) (2024-05-03T00:29:20Z) - Adaptive Resource Allocation for Virtualized Base Stations in O-RAN with
Online Learning [60.17407932691429]
基地局(vBS)を備えたオープンラジオアクセスネットワークシステムは、柔軟性の向上、コスト削減、ベンダーの多様性、相互運用性のメリットを提供する。
本研究では,予期せぬ「混み合う」環境下であっても,効率的なスループットとvBSエネルギー消費のバランスをとるオンライン学習アルゴリズムを提案する。
提案手法は, 課題のある環境においても, 平均最適性ギャップをゼロにすることで, サブ線形後悔を実現する。
論文 参考訳(メタデータ) (2023-09-04T17:30:21Z) - Learning to Control Autonomous Fleets from Observation via Offline
Reinforcement Learning [3.9121134770873733]
オフライン強化学習のレンズによる自律移動システム制御の形式化を提案する。
オフラインRLは、経済的にクリティカルなシステムにおいて、RLベースのソリューションを適用する上で有望なパラダイムであることを示す。
論文 参考訳(メタデータ) (2023-02-28T18:31:07Z) - Unified Automatic Control of Vehicular Systems with Reinforcement
Learning [64.63619662693068]
本稿では,車載マイクロシミュレーションの合理化手法について述べる。
最小限の手動設計で高性能な制御戦略を発見する。
この研究は、波動緩和、交通信号、ランプ計測に類似した多くの創発的挙動を明らかにしている。
論文 参考訳(メタデータ) (2022-07-30T16:23:45Z) - Learning energy-efficient driving behaviors by imitating experts [75.12960180185105]
本稿では,コミュニケーション・センシングにおける制御戦略と現実的限界のギャップを埋める上で,模倣学習が果たす役割について考察する。
擬似学習は、車両の5%に採用されれば、局地的な観測のみを用いて、交通条件の異なるネットワークのエネルギー効率を15%向上させる政策を導出できることを示す。
論文 参考訳(メタデータ) (2022-06-28T17:08:31Z) - Traffic Management of Autonomous Vehicles using Policy Based Deep
Reinforcement Learning and Intelligent Routing [0.26249027950824505]
本稿では,交差点の混雑状況に応じて交通信号を調整するDRLに基づく信号制御システムを提案する。
交差点の後方の道路での渋滞に対処するため,道路ネットワーク上で車両のバランスをとるために再ルート手法を用いた。
論文 参考訳(メタデータ) (2022-06-28T02:46:20Z) - AI-aided Traffic Control Scheme for M2M Communications in the Internet
of Vehicles [61.21359293642559]
交通のダイナミクスと異なるIoVアプリケーションの異種要求は、既存のほとんどの研究では考慮されていない。
本稿では,ハイブリッド交通制御方式とPPO法を併用して検討する。
論文 参考訳(メタデータ) (2022-03-05T10:54:05Z) - Optimizing Mixed Autonomy Traffic Flow With Decentralized Autonomous
Vehicles and Multi-Agent RL [63.52264764099532]
本研究では、完全分散制御方式を用いて、混合自律環境でのボトルネックのスループットを向上させる自動運転車の能力について検討する。
この問題にマルチエージェント強化アルゴリズムを適用し、5%の浸透速度で20%から40%の浸透速度で33%までのボトルネックスループットの大幅な改善が達成できることを実証した。
論文 参考訳(メタデータ) (2020-10-30T22:06:05Z) - Decision-making for Autonomous Vehicles on Highway: Deep Reinforcement
Learning with Continuous Action Horizon [14.059728921828938]
本稿では,高速道路における連続水平決定問題に対処するために,深部強化学習(DRL)手法を用いる。
エゴ自動車両の走行目標は、衝突することなく効率的でスムーズなポリシーを実行することである。
PPO-DRLに基づく意思決定戦略は、最適性、学習効率、適応性など、複数の観点から推定される。
論文 参考訳(メタデータ) (2020-08-26T22:49:27Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。