論文の概要: CoDriveVLM: VLM-Enhanced Urban Cooperative Dispatching and Motion Planning for Future Autonomous Mobility on Demand Systems
- arxiv url: http://arxiv.org/abs/2501.06132v1
- Date: Fri, 10 Jan 2025 17:44:57 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-13 15:26:28.835578
- Title: CoDriveVLM: VLM-Enhanced Urban Cooperative Dispatching and Motion Planning for Future Autonomous Mobility on Demand Systems
- Title(参考訳): CoDriveVLM:VLMによる都市協力型移動計画
- Authors: Haichao Liu, Ruoyu Yao, Wenru Liu, Zhenmin Huang, Shaojie Shen, Jun Ma,
- Abstract要約: CoDriveVLMは、将来の自律型モビリティ・オン・デマンド(AMoD)システムのために、高忠実な同時ディスパッチと協調動作計画を統合する新しいフレームワークである。
提案手法は,視覚言語モデル(VLM)を用いて多モード情報処理を強化し,包括的ディスパッチと衝突リスク評価を可能にする。
- 参考スコア(独自算出の注目度): 17.765742276150565
- License:
- Abstract: The increasing demand for flexible and efficient urban transportation solutions has spotlighted the limitations of traditional Demand Responsive Transport (DRT) systems, particularly in accommodating diverse passenger needs and dynamic urban environments. Autonomous Mobility-on-Demand (AMoD) systems have emerged as a promising alternative, leveraging connected and autonomous vehicles (CAVs) to provide responsive and adaptable services. However, existing methods primarily focus on either vehicle scheduling or path planning, which often simplify complex urban layouts and neglect the necessity for simultaneous coordination and mutual avoidance among CAVs. This oversimplification poses significant challenges to the deployment of AMoD systems in real-world scenarios. To address these gaps, we propose CoDriveVLM, a novel framework that integrates high-fidelity simultaneous dispatching and cooperative motion planning for future AMoD systems. Our method harnesses Vision-Language Models (VLMs) to enhance multi-modality information processing, and this enables comprehensive dispatching and collision risk evaluation. The VLM-enhanced CAV dispatching coordinator is introduced to effectively manage complex and unforeseen AMoD conditions, thus supporting efficient scheduling decision-making. Furthermore, we propose a scalable decentralized cooperative motion planning method via consensus alternating direction method of multipliers (ADMM) focusing on collision risk evaluation and decentralized trajectory optimization. Simulation results demonstrate the feasibility and robustness of CoDriveVLM in various traffic conditions, showcasing its potential to significantly improve the fidelity and effectiveness of AMoD systems in future urban transportation networks. The code is available at https://github.com/henryhcliu/CoDriveVLM.git.
- Abstract(参考訳): フレキシブルで効率的な都市交通ソリューションに対する需要の増加は、伝統的なデマンドレスポンシブ・トランスポート(DRT)システムの限界を浮き彫りにした。
自律型モビリティ・オン・デマンド(Autonomous Mobility-on-Demand, AMoD)システムは、コネクテッドおよび自律型車両(CAV)を活用して、応答性と適応性のあるサービスを提供する、有望な代替手段として登場した。
しかし、既存の手法は主に、複雑な都市のレイアウトを単純化し、CAV間の協調と相互回避の必要性を無視する、車両のスケジューリングまたは経路計画に重点を置いている。
この単純化は、現実世界のシナリオにおけるAMoDシステムの展開に重大な課題をもたらす。
これらのギャップに対処するため,我々は,将来のAMoDシステムのための高忠実度同時ディスパッチと協調動作計画を統合する新しいフレームワークであるCoDriveVLMを提案する。
提案手法は,視覚言語モデル(VLM)を用いて多モード情報処理を強化し,包括的ディスパッチと衝突リスク評価を可能にする。
複雑なAMoD条件を効果的に管理し、効率的なスケジューリング決定を支援するために、VLM強化CAVディスパッチコーディネータが導入された。
さらに, 衝突リスク評価と分散軌道最適化に着目し, コンセンサス交互方向の乗算器 (ADMM) を用いたスケーラブルな分散協調動作計画法を提案する。
シミュレーションの結果,様々な交通条件下でのCoDriveVLMの実現可能性とロバスト性を示し,今後の都市交通ネットワークにおけるAMoDシステムの忠実性と有効性を大幅に向上させる可能性を示した。
コードはhttps://github.com/henryhcliu/CoDriveVLM.gitで公開されている。
関連論文リスト
- Towards Interactive and Learnable Cooperative Driving Automation: a Large Language Model-Driven Decision-Making Framework [79.088116316919]
コネクテッド・オートモービルズ(CAV)は世界中の道路試験を開始したが、複雑なシナリオにおける安全性と効率性はまだ十分ではない。
本稿では,対話型かつ学習可能なLLM駆動協調運転フレームワークCoDrivingLLMを提案する。
論文 参考訳(メタデータ) (2024-09-19T14:36:00Z) - AgentsCoMerge: Large Language Model Empowered Collaborative Decision Making for Ramp Merging [46.69777653051523]
ランプの合流は交通システムのボトルネックの1つであり、交通渋滞、事故、深刻な二酸化炭素排出を引き起こすのが普通である。
我々は,大規模言語モデル(LLM)を活用するための新しい協調的意思決定フレームワーク,AgentsCoMergeを提案する。
論文 参考訳(メタデータ) (2024-08-07T08:34:48Z) - Cooperative Cognitive Dynamic System in UAV Swarms: Reconfigurable Mechanism and Framework [80.39138462246034]
UAVスワムの管理を最適化するための協調認知力学システム(CCDS)を提案する。
CCDSは階層的かつ協調的な制御構造であり、リアルタイムのデータ処理と意思決定を可能にする。
さらに、CCDSは、UAVスワムのタスクを効率的に割り当てるための生体模倣機構と統合することができる。
論文 参考訳(メタデータ) (2024-05-18T12:45:00Z) - Synthetic Participatory Planning of Shard Automated Electric Mobility Systems [0.0]
本稿では,大規模言語モデル(LLM)を批判的に活用してデジタルアバターを作成する,新しい合成参加手法を提案する。
これらの調整可能なエージェントは、目標を共同で識別し、SAEMS代替案を構想し、評価し、リスクと制約の下で実施をストラテジズする。
論文 参考訳(メタデータ) (2024-04-18T16:51:23Z) - LLM-Assisted Light: Leveraging Large Language Model Capabilities for Human-Mimetic Traffic Signal Control in Complex Urban Environments [3.7788636451616697]
本研究は,大規模言語モデルを交通信号制御システムに統合する革新的なアプローチを導入する。
LLMを知覚と意思決定ツールのスイートで強化するハイブリッドフレームワークが提案されている。
シミュレーションの結果から,交通環境の多種性に適応するシステムの有効性が示された。
論文 参考訳(メタデータ) (2024-03-13T08:41:55Z) - Real-time Cooperative Vehicle Coordination at Unsignalized Road
Intersections [7.860567520771493]
信号のない道路交差点での協調作業は、連結車両と自動車両の安全運転交通スループットを向上させることを目的としている。
我々はモデルフリーなマルコフ決定プロセス(MDP)を導入し、深層強化学習フレームワークにおける双遅延Deep Deterministic Policy(TD3)に基づく戦略によりそれに取り組む。
提案手法は, 準定常調整シナリオにおいて, ほぼ最適性能を達成し, 現実的な連続流れの制御を大幅に改善できることが示唆された。
論文 参考訳(メタデータ) (2022-05-03T02:56:02Z) - AI-aided Traffic Control Scheme for M2M Communications in the Internet
of Vehicles [61.21359293642559]
交通のダイナミクスと異なるIoVアプリケーションの異種要求は、既存のほとんどの研究では考慮されていない。
本稿では,ハイブリッド交通制御方式とPPO法を併用して検討する。
論文 参考訳(メタデータ) (2022-03-05T10:54:05Z) - Learning to Help Emergency Vehicles Arrive Faster: A Cooperative
Vehicle-Road Scheduling Approach [24.505687255063986]
車両中心のスケジューリングアプローチは、緊急車両の最適経路を推奨する。
道路中心のスケジューリングアプローチは、交通状況を改善し、EVが交差点を通過するための優先度を高めることを目的としている。
本稿では,リアルタイム経路計画モジュールと協調交通信号制御モジュールを含む協調型VehIcle-roaDスケジューリング手法であるLEVIDを提案する。
論文 参考訳(メタデータ) (2022-02-20T10:25:15Z) - Transferable Deep Reinforcement Learning Framework for Autonomous
Vehicles with Joint Radar-Data Communications [69.24726496448713]
本稿では,AVの最適決定を支援するために,マルコフ決定プロセス(MDP)に基づくインテリジェントな最適化フレームワークを提案する。
そこで我々は,近年の深層強化学習技術を活用した効果的な学習アルゴリズムを開発し,AVの最適方針を見出す。
提案手法は,従来の深部強化学習手法と比較して,AVによる障害物ミス検出確率を最大67%削減することを示す。
論文 参考訳(メタデータ) (2021-05-28T08:45:37Z) - A Modular and Transferable Reinforcement Learning Framework for the
Fleet Rebalancing Problem [2.299872239734834]
モデルフリー強化学習(RL)に基づく艦隊再バランスのためのモジュラーフレームワークを提案する。
動作領域のグリッド上の分布としてRL状態とアクション空間を定式化し,フレームワークをスケーラブルにする。
実世界の旅行データとネットワークデータを用いた数値実験は、このアプローチがベースライン法よりもいくつかの異なる利点があることを実証している。
論文 参考訳(メタデータ) (2021-05-27T16:32:28Z) - Value Function is All You Need: A Unified Learning Framework for Ride
Hailing Platforms [57.21078336887961]
DiDi、Uber、Lyftなどの大型配車プラットフォームは、都市内の数万台の車両を1日中数百万の乗車要求に接続している。
両課題に対処するための統合価値に基づく動的学習フレームワーク(V1D3)を提案する。
論文 参考訳(メタデータ) (2021-05-18T19:22:24Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。