論文の概要: WF-UNet: Weather Fusion UNet for Precipitation Nowcasting
- arxiv url: http://arxiv.org/abs/2302.04102v2
- Date: Thu, 9 Feb 2023 12:00:52 GMT
- ステータス: 処理完了
- システム内更新日: 2023-02-10 12:02:32.641879
- Title: WF-UNet: Weather Fusion UNet for Precipitation Nowcasting
- Title(参考訳): WF-UNet: 降雨予報のための気象融合UNet
- Authors: Christos Kaparakis, Siamak Mehrkanoon
- Abstract要約: ヨーロッパ西部の降水量計におけるUNetコアモデルの利用とその拡張について, 最大3時間前に検討した。
我々は2016年1月から2021年12月までの6年間の降水と風のレーダー画像を収集しました。
WF-UNetは、それぞれ22%、8%、6%の低いMSEを1,2,3時間で比較した。
- 参考スコア(独自算出の注目度): 4.213427823201119
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Designing early warning systems for harsh weather and its effects, such as
urban flooding or landslides, requires accurate short-term forecasts (nowcasts)
of precipitation. Nowcasting is a significant task with several environmental
applications, such as agricultural management or increasing flight safety. In
this study, we investigate the use of a UNet core-model and its extension for
precipitation nowcasting in western Europe for up to 3 hours ahead. In
particular, we propose the Weather Fusion UNet (WF-UNet) model, which utilizes
the Core 3D-UNet model and integrates precipitation and wind speed variables as
input in the learning process and analyze its influences on the precipitation
target task. We have collected six years of precipitation and wind radar images
from Jan 2016 to Dec 2021 of 14 European countries, with 1-hour temporal
resolution and 31 square km spatial resolution based on the ERA5 dataset,
provided by Copernicus, the European Union's Earth observation programme. We
compare the proposed WF-UNet model to persistence model as well as other UNet
based architectures that are trained only using precipitation radar input data.
The obtained results show that WF-UNet outperforms the other examined
best-performing architectures by 22%, 8% and 6% lower MSE at a horizon of 1, 2
and 3 hours respectively.
- Abstract(参考訳): 厳しい天候や都市洪水や地すべりなどの影響に対する早期警戒システムの設計には、降水の正確な短期予測(現在の予測)が必要である。
nowcastingは、農業管理や飛行安全の向上など、いくつかの環境応用において重要なタスクである。
本研究では,UNetコアモデルの利用状況と西ヨーロッパでの降水量の増加について,最大3時間前に検討した。
特に,コア3D-UNetモデルを用いて,降水および風速変数を学習プロセスの入力として統合し,降水目標タスクに与える影響を解析する天気融合UNet(WF-UNet)モデルを提案する。
欧州14カ国の2016年1月から2021年12月までの6年間の降水と風のレーダー画像を収集し,ERA5データセットに基づいた時間分解能と31平方kmの空間分解能を欧州連合の地球観測プログラムであるCopernicusによって提供した。
提案したWF-UNetモデルと,降雨レーダ入力データのみを用いてトレーニングされた他のUNetアーキテクチャとの比較を行った。
その結果,WF-UNetは22%,8%,6%低いMSEをそれぞれ1,2,3時間で比較した。
関連論文リスト
- FengWu-W2S: A deep learning model for seamless weather-to-subseasonal forecast of global atmosphere [53.22497376154084]
本研究では,FengWuグローバル気象予報モデルに基づくFengWu-Weather to Subseasonal (FengWu-W2S)を提案する。
我々は,FengWu-W2Sが大気環境を3~6週間先まで確実に予測し,マデン・ジュリア振動 (MJO) や北大西洋振動 (NAO) などの地球表面温度, 降水量, 地磁気高度, 季節内信号の予測能力を向上させることを実証した。
日時から季節時の予測誤差成長に関するアブレーション実験
論文 参考訳(メタデータ) (2024-11-15T13:44:37Z) - Data-driven rainfall prediction at a regional scale: a case study with Ghana [4.028179670997471]
最先端の数値天気予報(NWP)モデルは、アフリカの熱帯地域で熟練した降雨予測を作成するのに苦労している。
2つのU-Net畳み込みニューラルネットワーク(CNN)モデルを開発し、12時間と30時間リード時の24時間降雨を予測する。
また,従来のNWPモデルとデータ駆動モデルを組み合わせることにより,予測精度が向上することがわかった。
論文 参考訳(メタデータ) (2024-10-17T22:07:53Z) - Efficient Localized Adaptation of Neural Weather Forecasting: A Case Study in the MENA Region [62.09891513612252]
地域レベルのダウンストリームタスクに特化して、リミテッド・エリア・モデリングに焦点を合わせ、モデルをトレーニングします。
我々は,気象予報が水資源の管理,農業,極度の気象事象の影響軽減に重要であるという,気象学的課題からMENA地域を考察する。
本研究では,パラメータ効率のよい微調整手法,特にローランド適応(LoRA)とその変種を統合することの有効性を検証することを目的とした。
論文 参考訳(メタデータ) (2024-09-11T19:31:56Z) - Regional data-driven weather modeling with a global stretched-grid [0.3804109677654105]
このモデルはグラフニューラルネットワークに基づいており、これは自然に任意のマルチレゾリューショングリッド構成を提供する。
このモデルは北欧の短距離気象予測に適用され、2.5km、時間分解能は6hと予測される。
このモデルは、競争力のある降水量や風速予測も生み出すが、極端な出来事を過小評価している。
論文 参考訳(メタデータ) (2024-09-04T17:31:20Z) - An ensemble of data-driven weather prediction models for operational sub-seasonal forecasting [0.08106028186803123]
運用可能なマルチモデルアンサンブル天気予報システムを提案する。
データ駆動型天気予報モデルを用いたマルチモデルアンサンブル手法により、最先端のサブシーズン・シーズン・シーズン予測を実現することができる。
論文 参考訳(メタデータ) (2024-03-22T20:01:53Z) - FengWu-GHR: Learning the Kilometer-scale Medium-range Global Weather
Forecasting [56.73502043159699]
この研究は、データ駆動型世界天気予報モデルであるFengWu-GHRを、0.09$circ$水平解像度で実行した。
低解像度モデルから事前知識を継承することにより、MLベースの高解像度予測を操作するための扉を開く新しいアプローチを導入する。
2022年の天気予報は、FengWu-GHRがIFS-HRESよりも優れていることを示している。
論文 参考訳(メタデータ) (2024-01-28T13:23:25Z) - FuXi-S2S: A machine learning model that outperforms conventional global subseasonal forecast models [13.852128658186876]
FuXi Subseasonal-to-Seasonal (FuXi-S2S)は、グローバルな日平均予測を最大42日間提供する機械学習モデルである。
ECMWF ERA5の再分析データから72年間の日次統計をトレーニングしたFuXi-S2Sは、ECMWFの最先端のサブシーズン・ツー・シーソンモデルを上回っている。
論文 参考訳(メタデータ) (2023-12-15T16:31:44Z) - Residual Corrective Diffusion Modeling for Km-scale Atmospheric Downscaling [58.456404022536425]
気象・気候からの物理的危険予知技術の現状には、粗い解像度のグローバルな入力によって駆動される高価なkmスケールの数値シミュレーションが必要である。
ここでは、コスト効率のよい機械学習代替手段として、このようなグローバルな入力をkmスケールにダウンスケールするために、生成拡散アーキテクチャを探索する。
このモデルは、台湾上空の地域気象モデルから2kmのデータを予測するために訓練され、世界25kmの再解析に基づいている。
論文 参考訳(メタデータ) (2023-09-24T19:57:22Z) - A Deep Learning Method for Real-time Bias Correction of Wind Field
Forecasts in the Western North Pacific [24.287588853356972]
2020年12月から2021年11月までにECから10日間の風速予測のための実時間転動バイアス補正を行った。
風速と風向バイアスはそれぞれ8-11%,9-14%減少した。
論文 参考訳(メタデータ) (2022-12-29T02:58:12Z) - Pangu-Weather: A 3D High-Resolution Model for Fast and Accurate Global
Weather Forecast [91.9372563527801]
我々は,世界天気予報を迅速かつ高精度に予測するためのディープラーニングベースのシステムであるPangu-Weatherを紹介する。
初めてAIベースの手法が、最先端の数値天気予報法(NWP)を精度で上回った。
Pangu-Weatherは、極端な天気予報や大規模なアンサンブル予測など、幅広い下流予測シナリオをサポートしている。
論文 参考訳(メタデータ) (2022-11-03T17:19:43Z) - A generative adversarial network approach to (ensemble) weather
prediction [91.3755431537592]
本研究では,500hPaの圧力レベル,2m温度,24時間の総降水量を予測するために,条件付き深部畳み込み生成対向ネットワークを用いた。
提案されたモデルは、2019年に関連する気象分野を予測することを目的として、2015年から2018年までの4年間のERA5の再分析データに基づいて訓練されている。
論文 参考訳(メタデータ) (2020-06-13T20:53:17Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。