論文の概要: 3D Human Pose and Shape Estimation via HybrIK-Transformer
- arxiv url: http://arxiv.org/abs/2302.04774v3
- Date: Mon, 27 Mar 2023 15:33:35 GMT
- ステータス: 処理完了
- システム内更新日: 2023-03-29 00:34:37.491262
- Title: 3D Human Pose and Shape Estimation via HybrIK-Transformer
- Title(参考訳): hybrik-transformerによる3次元人物ポーズと形状推定
- Authors: Boris N. Oreshkin
- Abstract要約: HybrIKは解析的逆運動学とディープラーニングを組み合わせて、より正確な3Dポーズ推定を生成する。
本稿では2Dから3Dへのリフトモジュールの強化を提案し,デコンボリューションをTransformerに置き換える。
- 参考スコア(独自算出の注目度): 11.193504036335503
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: HybrIK relies on a combination of analytical inverse kinematics and deep
learning to produce more accurate 3D pose estimation from 2D monocular images.
HybrIK has three major components: (1) pretrained convolution backbone, (2)
deconvolution to lift 3D pose from 2D convolution features, (3) analytical
inverse kinematics pass correcting deep learning prediction using learned
distribution of plausible twist and swing angles. In this paper we propose an
enhancement of the 2D to 3D lifting module, replacing deconvolution with
Transformer, resulting in accuracy and computational efficiency improvement
relative to the original HybrIK method. We demonstrate our results on commonly
used H36M, PW3D, COCO and HP3D datasets. Our code is publicly available
https://github.com/boreshkinai/hybrik-transformer.
- Abstract(参考訳): HybrIKは解析的逆運動学とディープラーニングを組み合わせて、2次元単眼画像からより正確な3Dポーズ推定を生成する。
HybrIKは、(1)事前学習された畳み込みバックボーン、(2)2次元畳み込み特徴から3次元ポーズをリフトするデコンボリューション、(3)解析的逆運動学は、プラプシブルツイストとスイング角の学習分布を用いてディープラーニング予測を補正する。
本稿では,2次元から3次元への昇降モジュールを改良し,デコンボリューションをTransformerに置き換えることで,元のHybrIK法と比較して精度と計算効率が向上することを示す。
我々は、一般的なh36m、pw3d、coco、hp3dデータセットで結果を示す。
私たちのコードはhttps://github.com/boreshkinai/hybrik-transformerで公開しています。
関連論文リスト
- GSD: View-Guided Gaussian Splatting Diffusion for 3D Reconstruction [52.04103235260539]
単一視点からの3次元オブジェクト再構成のためのガウススプティング表現に基づく拡散モデル手法を提案する。
モデルはGS楕円体の集合で表される3Dオブジェクトを生成することを学習する。
最終的な再構成されたオブジェクトは、高品質な3D構造とテクスチャを持ち、任意のビューで効率的にレンダリングできる。
論文 参考訳(メタデータ) (2024-07-05T03:43:08Z) - UPose3D: Uncertainty-Aware 3D Human Pose Estimation with Cross-View and Temporal Cues [55.69339788566899]
UPose3Dは多視点人間のポーズ推定のための新しいアプローチである。
直接的な3Dアノテーションを必要とせずに、堅牢性と柔軟性を向上させる。
論文 参考訳(メタデータ) (2024-04-23T00:18:00Z) - Any2Point: Empowering Any-modality Large Models for Efficient 3D Understanding [83.63231467746598]
我々は,Any2Pointというパラメータ効率のよい大規模モデル(ビジョン,言語,音声)を3次元理解に活用する手法を紹介した。
入力された3Dポイントと元の1Dまたは2D位置との相関関係を示す3D-to-any (1Dまたは2D)仮想プロジェクション戦略を提案する。
論文 参考訳(メタデータ) (2024-04-11T17:59:45Z) - 3D Geometry-aware Deformable Gaussian Splatting for Dynamic View Synthesis [49.352765055181436]
動的ビュー合成のための3次元幾何学的変形可能なガウススメッティング法を提案する。
提案手法は,動的ビュー合成と3次元動的再構成を改良した3次元形状認識変形モデリングを実現する。
論文 参考訳(メタデータ) (2024-04-09T12:47:30Z) - HybrIK-X: Hybrid Analytical-Neural Inverse Kinematics for Whole-body
Mesh Recovery [40.88628101598707]
本稿では,3次元キーポイント推定とボディーメッシュ回復を統合したハイブリッド逆キネマティクスソリューションHybrIKを提案する。
HybrIKは、正確な3Dジョイントを直接、ねじりとねじりの分解によって、ボディ部分の回転に変換する。
我々はさらに、HybrIK-Xという総合的な枠組みを開発し、手と表情でHybrIKを強化する。
論文 参考訳(メタデータ) (2023-04-12T08:29:31Z) - Uplift and Upsample: Efficient 3D Human Pose Estimation with Uplifting
Transformers [28.586258731448687]
時間的にスパースな2Dポーズシーケンスを操作できるTransformerベースのポーズアップリフト方式を提案する。
本稿では,Transformerブロック内の時間的アップサンプリングにマスク付きトークンモデリングをどのように利用できるかを示す。
我々は,Human3.6M と MPI-INF-3DHP の2つのベンチマークデータセットを用いて評価を行った。
論文 参考訳(メタデータ) (2022-10-12T12:00:56Z) - To The Point: Correspondence-driven monocular 3D category reconstruction [39.811816510186475]
To The Point (TTP) は、弱い監督から学んだ2Dから3D対応を用いて、単一の画像から3Dオブジェクトを再構成する手法である。
我々は、CNNによるカメラポーズと非剛性変形の回帰を置き換え、より正確な3D再構成を得る。
論文 参考訳(メタデータ) (2021-06-10T11:21:14Z) - HybrIK: A Hybrid Analytical-Neural Inverse Kinematics Solution for 3D
Human Pose and Shape Estimation [39.67289969828706]
本稿では,体メッシュ推定と3次元キーポイント推定のギャップを埋めるために,新しいハイブリッド逆キネマティクスソリューション(HybrIK)を提案する。
HybrIKは、正確な3D関節を相対的なボディ部分回転に変換し、3Dボディーメッシュを再構築する。
その結果,HybrIKは3次元ポーズの精度とパラメトリックな人間の身体構造の両方を保っていることがわかった。
論文 参考訳(メタデータ) (2020-11-30T10:32:30Z) - Synthetic Training for Monocular Human Mesh Recovery [100.38109761268639]
本稿では,RGB画像と大規模に異なる複数の身体部位の3次元メッシュを推定することを目的とする。
主な課題は、2D画像のすべての身体部分の3Dアノテーションを完備するトレーニングデータがないことである。
本稿では,D2S(Deep-to-scale)投影法を提案する。
論文 参考訳(メタデータ) (2020-10-27T03:31:35Z) - Exemplar Fine-Tuning for 3D Human Model Fitting Towards In-the-Wild 3D
Human Pose Estimation [107.07047303858664]
3次元の地平線アノテーションを持つ大規模な人的データセットは、野生では入手が困難である。
既存の2Dデータセットを高品質な3Dポーズマッチングで拡張することで、この問題に対処する。
結果として得られるアノテーションは、3Dのプロシージャネットワークをスクラッチからトレーニングするのに十分である。
論文 参考訳(メタデータ) (2020-04-07T20:21:18Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。