Universal approach for quantum interfaces with atomic arrays
- URL: http://arxiv.org/abs/2302.04913v1
- Date: Thu, 9 Feb 2023 19:50:51 GMT
- Title: Universal approach for quantum interfaces with atomic arrays
- Authors: Yakov Solomons, Roni Ben-Maimon, and Ephraim Shahmoon
- Abstract summary: We develop a general approach for the characterization of atom-array platforms as light-matter interfaces.
Our approach is based on the mapping of atom-array problems to a generic 1D model of light interacting with a collective dipole.
We find that the efficiency of light-matter coupling, which in turn determines those of quantum memory and entanglement, is given by the on-resonance reflectivity of the 1D scattering problem.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We develop a general approach for the characterization of atom-array
platforms as light-matter interfaces, focusing on their application in quantum
memory and photonic entanglement generation. Our approach is based on the
mapping of atom-array problems to a generic 1D model of light interacting with
a collective dipole. We find that the efficiency of light-matter coupling,
which in turn determines those of quantum memory and entanglement, is given by
the on-resonance reflectivity of the 1D scattering problem, $r_0=C/(1+C)$,
where $C$ is a cooperativity parameter of the model. For 2D and 3D atomic
arrays in free space, we derive the mapping parameter $C$ and hence $r_0$,
while accounting for realistic effects such as the finite sizes of the array
and illuminating beam and weak disorder in atomic positions. Our analytical
results are verified numerically and reveal a key idea: efficiencies of quantum
tasks are reduced by our approach to the classical calculation of a
reflectivity. This provides a unified framework for the analysis of collective
light-matter coupling in various relevant platforms such as optical lattices
and tweezer arrays. Generalization to collective systems beyond arrays is
discussed.
Related papers
- Deterministic photonic entanglement arising from non-Abelian quantum holonomy [0.0]
We develop a protocol for creating and manipulating highly-entangled superpositions of well-controlled states of light.
Our calculations indicate that a subset of such entangled superpositions are maximally-entangled, "volume-law" states.
We envision that this entangling mechanism could be utilized for realizing universal, entangling quantum gates with linear photonic elements alone.
arXiv Detail & Related papers (2024-07-29T18:32:33Z) - Quantum interfaces with multilayered superwavelength atomic arrays [0.0]
We consider quantum light-matter interfaces comprised of multiple layers of two-dimensional atomic arrays.
We show that the addition of layers can suppress these losses through destructive interference between the layers.
We find that optimized efficiency favors small diffraction-order angles and small interlayer separations.
arXiv Detail & Related papers (2024-02-09T23:57:02Z) - Quantum density matrix theory for a laser without adiabatic elimination
of the population inversion: transition to lasing in the class-B limit [62.997667081978825]
No class-B quantum density-matrix model is available to date, capable of accurately describing coherence and photon correlations within a unified theory.
Here we carry out a density-matrix theoretical approach for generic class-B lasers, and provide closed equations for the photonic and atomic reduced density matrix in the Fock basis of photons.
This model enables the study of few-photon bifurcations and non-classical photon correlations in class-B laser devices, also leveraging quantum descriptions of coherently coupled nanolaser arrays.
arXiv Detail & Related papers (2022-05-26T16:33:51Z) - Correlated steady states and Raman lasing in continuously pumped and
probed atomic ensembles [68.8204255655161]
We consider an ensemble of Alkali atoms that are continuously optically pumped and probed.
Due to the collective scattering of photons at large optical depth, the steady state of atoms does not correspond to an uncorrelated tensor-product state.
We find and characterize regimes of Raman lasing, akin to the model of a superradiant laser.
arXiv Detail & Related papers (2022-05-10T06:54:54Z) - Stochastic Variational Approach to Small Atoms and Molecules Coupled to
Quantum Field Modes [55.41644538483948]
We present a variational calculation (SVM) of energies and wave functions of few particle systems coupled to quantum fields in cavity QED.
Examples for a two-dimensional trion and confined electrons as well as for the He atom and the Hydrogen molecule are presented.
arXiv Detail & Related papers (2021-08-25T13:40:42Z) - Tunable directional emission and collective dissipation with quantum
metasurfaces [62.997667081978825]
Subradiant excitations propagate through the atomic array with very long lifetimes.
We demonstrate that one can harness these excitations to obtain tunable directional emission patterns.
We also benchmark how these directional emission patterns translate into collective, anisotropic dissipative couplings.
arXiv Detail & Related papers (2021-07-01T14:26:33Z) - Quantum nonlinear optics based on two-dimensional Rydberg atom arrays [0.0]
We explore the combination of sub-wavelength, two-dimensional atomic arrays and Rydberg interactions as a powerful platform to realize strong, coherent interactions.
We show that such a system enables a coherent photon-photon gate or switch, with an error scaling significantly better than the best known scaling in a disordered ensemble.
Although this a priori represents a complicated, many-body quantum driven dissipative system, we find that the behavior can be captured well by a semi-classical model.
arXiv Detail & Related papers (2021-01-06T09:28:32Z) - Generation of Photonic Matrix Product States with Rydberg Atomic Arrays [63.62764375279861]
We show how one can deterministically generate photonic matrix product states with high bond and physical dimensions with an atomic array.
We develop a quantum gate and an optimal control approach to universally control the system and analyze the photon retrieval efficiency of atomic arrays.
arXiv Detail & Related papers (2020-11-08T07:59:55Z) - Quantum delocalization, gauge and quantum optics: The light-matter
interaction in relativistic quantum information [0.0]
We revisit the interaction of a first-quantized atomic system with the quantum electromagnetic field.
We connect the full minimal-coupling model with the typical effective models used in quantum optics.
arXiv Detail & Related papers (2020-08-28T18:00:00Z) - Variational Monte Carlo calculations of $\mathbf{A\leq 4}$ nuclei with
an artificial neural-network correlator ansatz [62.997667081978825]
We introduce a neural-network quantum state ansatz to model the ground-state wave function of light nuclei.
We compute the binding energies and point-nucleon densities of $Aleq 4$ nuclei as emerging from a leading-order pionless effective field theory Hamiltonian.
arXiv Detail & Related papers (2020-07-28T14:52:28Z) - A subradiant optical mirror formed by a single structured atomic layer [0.0]
We report on the direct observation of the cooperative subradiant response of a two-dimensional (2d) square array of atoms in an optical lattice.
We show that the array acts as an efficient mirror formed by only a single monolayer of a few hundred atoms.
arXiv Detail & Related papers (2020-01-03T11:55:05Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.