Data-Driven Stochastic Motion Evaluation and Optimization with Image by
Spatially-Aligned Temporal Encoding
- URL: http://arxiv.org/abs/2302.05041v1
- Date: Fri, 10 Feb 2023 04:06:00 GMT
- Title: Data-Driven Stochastic Motion Evaluation and Optimization with Image by
Spatially-Aligned Temporal Encoding
- Authors: Takeru Oba and Norimichi Ukita
- Abstract summary: This paper proposes a probabilistic motion prediction for long motions. The motion is predicted so that it accomplishes a task from the initial state observed in the given image.
Our method seamlessly integrates the image and motion data into the image feature domain by spatially-aligned temporal encoding.
The effectiveness of the proposed method is demonstrated with a variety of experiments with similar SOTA methods.
- Score: 8.104557130048407
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper proposes a probabilistic motion prediction method for long
motions. The motion is predicted so that it accomplishes a task from the
initial state observed in the given image. While our method evaluates the task
achievability by the Energy-Based Model (EBM), previous EBMs are not designed
for evaluating the consistency between different domains (i.e., image and
motion in our method). Our method seamlessly integrates the image and motion
data into the image feature domain by spatially-aligned temporal encoding so
that features are extracted along the motion trajectory projected onto the
image. Furthermore, this paper also proposes a data-driven motion optimization
method, Deep Motion Optimizer (DMO), that works with EBM for motion prediction.
Different from previous gradient-based optimizers, our self-supervised DMO
alleviates the difficulty of hyper-parameter tuning to avoid local minima. The
effectiveness of the proposed method is demonstrated with a variety of
experiments with similar SOTA methods.
Related papers
- Motion-prior Contrast Maximization for Dense Continuous-Time Motion Estimation [34.529280562470746]
We introduce a novel self-supervised loss combining the Contrast Maximization framework with a non-linear motion prior in the form of pixel-level trajectories.
Their effectiveness is demonstrated in two scenarios: In dense continuous-time motion estimation, our method improves the zero-shot performance of a synthetically trained model by 29%.
arXiv Detail & Related papers (2024-07-15T15:18:28Z) - Differentiable Score-Based Likelihoods: Learning CT Motion Compensation From Clean Images [3.0013267540370423]
Motion artifacts can compromise the diagnostic value of computed tomography (CT) images.
We train a score-based model to act as a probability density estimator for clean head CT images.
We quantify the deviation of a given motion-affected CT image from the ideal distribution through likelihood.
arXiv Detail & Related papers (2024-04-23T04:59:34Z) - Motion-adaptive Separable Collaborative Filters for Blind Motion Deblurring [71.60457491155451]
Eliminating image blur produced by various kinds of motion has been a challenging problem.
We propose a novel real-world deblurring filtering model called the Motion-adaptive Separable Collaborative Filter.
Our method provides an effective solution for real-world motion blur removal and achieves state-of-the-art performance.
arXiv Detail & Related papers (2024-04-19T19:44:24Z) - Motion Flow Matching for Human Motion Synthesis and Editing [75.13665467944314]
We propose emphMotion Flow Matching, a novel generative model for human motion generation featuring efficient sampling and effectiveness in motion editing applications.
Our method reduces the sampling complexity from thousand steps in previous diffusion models to just ten steps, while achieving comparable performance in text-to-motion and action-to-motion generation benchmarks.
arXiv Detail & Related papers (2023-12-14T12:57:35Z) - Dyna-DepthFormer: Multi-frame Transformer for Self-Supervised Depth
Estimation in Dynamic Scenes [19.810725397641406]
We propose a novel Dyna-Depthformer framework, which predicts scene depth and 3D motion field jointly.
Our contributions are two-fold. First, we leverage multi-view correlation through a series of self- and cross-attention layers in order to obtain enhanced depth feature representation.
Second, we propose a warping-based Motion Network to estimate the motion field of dynamic objects without using semantic prior.
arXiv Detail & Related papers (2023-01-14T09:43:23Z) - Learning Implicit Priors for Motion Optimization [105.11889448885226]
Energy-based Models (EBM) represent expressive probability density distributions.
We present a set of required modeling and algorithmic choices to adapt EBMs into motion optimization.
arXiv Detail & Related papers (2022-04-11T19:14:54Z) - Extension of Dynamic Mode Decomposition for dynamic systems with
incomplete information based on t-model of optimal prediction [69.81996031777717]
The Dynamic Mode Decomposition has proved to be a very efficient technique to study dynamic data.
The application of this approach becomes problematic if the available data is incomplete because some dimensions of smaller scale either missing or unmeasured.
We consider a first-order approximation of the Mori-Zwanzig decomposition, state the corresponding optimization problem and solve it with the gradient-based optimization method.
arXiv Detail & Related papers (2022-02-23T11:23:59Z) - EM-driven unsupervised learning for efficient motion segmentation [3.5232234532568376]
This paper presents a CNN-based fully unsupervised method for motion segmentation from optical flow.
We use the Expectation-Maximization (EM) framework to leverage the loss function and the training procedure of our motion segmentation neural network.
Our method outperforms comparable unsupervised methods and is very efficient.
arXiv Detail & Related papers (2022-01-06T14:35:45Z) - MotionHint: Self-Supervised Monocular Visual Odometry with Motion
Constraints [70.76761166614511]
We present a novel self-supervised algorithm named MotionHint for monocular visual odometry (VO)
Our MotionHint algorithm can be easily applied to existing open-sourced state-of-the-art SSM-VO systems.
arXiv Detail & Related papers (2021-09-14T15:35:08Z) - Conditional Temporal Variational AutoEncoder for Action Video Prediction [66.63038712306606]
ACT-VAE predicts pose sequences for an action clips from a single input image.
When connected with a plug-and-play Pose-to-Image (P2I) network, ACT-VAE can synthesize image sequences.
arXiv Detail & Related papers (2021-08-12T10:59:23Z) - Learning a Generative Motion Model from Image Sequences based on a
Latent Motion Matrix [8.774604259603302]
We learn a probabilistic motion model from simulating temporal-temporal registration in a sequence of images.
We show improved registration accuracy-temporally smoother consistencys compared to three state-of-the-art registration algorithms.
We also demonstrate the model's applicability for motion analysis, simulation and super-resolution by an improved motion reconstruction from sequences with missing frames.
arXiv Detail & Related papers (2020-11-03T14:44:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.