論文の概要: CCDN: Checkerboard Corner Detection Network for Robust Camera
Calibration
- arxiv url: http://arxiv.org/abs/2302.05097v1
- Date: Fri, 10 Feb 2023 07:47:44 GMT
- ステータス: 処理完了
- システム内更新日: 2023-02-13 16:20:27.456321
- Title: CCDN: Checkerboard Corner Detection Network for Robust Camera
Calibration
- Title(参考訳): CCDN:ロバストカメラ校正のためのチェッカーボードコーナー検出ネットワーク
- Authors: Ben Chen, Caihua Xiong, Qi Zhang
- Abstract要約: チェッカーボードコーナー検出ネットワークといくつかの後処理技術。
ネットワークモデルは、損失関数と学習率を改善した完全な畳み込みネットワークである。
偽陽性を除去するために,最大応答,非最大抑制,クラスタリングに関連するしきい値を含む3つの後処理手法を用いる。
- 参考スコア(独自算出の注目度): 10.614480156920935
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Aiming to improve the checkerboard corner detection robustness against the
images with poor quality, such as lens distortion, extreme poses, and noise, we
propose a novel detection algorithm which can maintain high accuracy on inputs
under multiply scenarios without any prior knowledge of the checkerboard
pattern. This whole algorithm includes a checkerboard corner detection network
and some post-processing techniques. The network model is a fully convolutional
network with improvements of loss function and learning rate, which can deal
with the images of arbitrary size and produce correspondingly-sized output with
a corner score on each pixel by efficient inference and learning. Besides, in
order to remove the false positives, we employ three post-processing techniques
including threshold related to maximum response, non-maximum suppression, and
clustering. Evaluations on two different datasets show its superior robustness,
accuracy and wide applicability in quantitative comparisons with the
state-of-the-art methods, like MATE, ChESS, ROCHADE and OCamCalib.
- Abstract(参考訳): レンズ歪み, 極端ポーズ, ノイズなどの画質の悪い画像に対して, チェッカーボード角検出の堅牢性を向上させることを目的として, チェッカーボードパターンの事前知識を必要とせず, 複数シナリオの入力に対して高い精度を維持できる新しい検出アルゴリズムを提案する。
このアルゴリズムは、チェッカーボードコーナー検出ネットワークといくつかの後処理技術を含んでいる。
ネットワークモデルは、損失関数と学習率を改善した完全畳み込みネットワークであり、任意のサイズの画像を処理し、効率的な推論と学習により各画素のコーナースコアで対応する大きさのアウトプットを生成することができる。
また,偽陽性を除去するために,最大応答の閾値,非最大抑制,クラスタリングを含む3つの後処理技術を用いる。
2つの異なるデータセットの評価は、MATE、ChESS、ROCHADE、OCamCalibといった最先端の手法と比較して、その優れた堅牢性、精度、幅広い適用性を示している。
関連論文リスト
- Learning to Make Keypoints Sub-Pixel Accurate [80.55676599677824]
本研究は,2次元局所特徴の検出におけるサブピクセル精度の課題に対処する。
本稿では,検出された特徴に対するオフセットベクトルを学習することにより,サブピクセル精度で検出器を拡張できる新しいネットワークを提案する。
論文 参考訳(メタデータ) (2024-07-16T12:39:56Z) - KECOR: Kernel Coding Rate Maximization for Active 3D Object Detection [48.66703222700795]
我々は、ラベルの取得に最も有用なポイントクラウドを特定するために、新しいカーネル戦略を利用する。
1段目(SECOND)と2段目(SECOND)の両方に対応するため、アノテーションに選択した境界ボックスの総数と検出性能のトレードオフをよく組み込んだ分類エントロピー接点を組み込んだ。
その結果,ボックスレベルのアノテーションのコストは約44%,計算時間は26%削減された。
論文 参考訳(メタデータ) (2023-07-16T04:27:03Z) - Quantity-Aware Coarse-to-Fine Correspondence for Image-to-Point Cloud
Registration [4.954184310509112]
Image-to-point cloud registrationは、RGBイメージと参照ポイントクラウドの間の相対カメラのポーズを決定することを目的としている。
個々の点と画素とのマッチングは、モダリティギャップによって本質的に曖昧である。
本稿では,局所点集合と画素パッチ間の量認識対応を捉える枠組みを提案する。
論文 参考訳(メタデータ) (2023-07-14T03:55:54Z) - RCDN -- Robust X-Corner Detection Algorithm based on Advanced CNN Model [3.580983453285039]
複数の干渉下で入力に対して高いサブピクセル精度を維持することができる新しい検出アルゴリズムを提案する。
アルゴリズム全体は粗い戦略を採用しており、Xコーン検出ネットワークと3つの後処理技術を含んでいる。
実画像および合成画像の評価は,提案アルゴリズムが他の一般的な手法よりも検出率,サブピクセル精度,ロバスト性が高いことを示す。
論文 参考訳(メタデータ) (2023-07-07T10:40:41Z) - One-Stage Deep Edge Detection Based on Dense-Scale Feature Fusion and
Pixel-Level Imbalance Learning [5.370848116287344]
後処理なしで高品質なエッジ画像を生成することができる一段階ニューラルネットワークモデルを提案する。
提案モデルでは、トレーニング済みのニューラルモデルをエンコーダとして使用する古典的なエンコーダデコーダフレームワークを採用している。
本稿では,エッジ画像の画素レベルの不均衡に対処する新たな損失関数を提案する。
論文 参考訳(メタデータ) (2022-03-17T15:26:00Z) - Hierarchical Convolutional Neural Network with Feature Preservation and
Autotuned Thresholding for Crack Detection [5.735035463793008]
ドローンの画像はインフラ表面の欠陥の自動検査にますます使われている。
本稿では,階層型畳み込みニューラルネットワークを用いた深層学習手法を提案する。
提案手法は, 道路, 橋, 舗装の表面ひび割れの同定に応用されている。
論文 参考訳(メタデータ) (2021-04-21T13:07:58Z) - Lightweight Convolutional Neural Network with Gaussian-based Grasping
Representation for Robotic Grasping Detection [4.683939045230724]
現在の物体検出器は、高い精度と高速な推論速度のバランスを取るのが難しい。
ロボットつかみポーズ推定を行うための効率的かつ堅牢な完全畳み込みニューラルネットワークモデルを提案する。
ネットワークは、他の優れたアルゴリズムよりも桁違いに小さい順序です。
論文 参考訳(メタデータ) (2021-01-25T16:36:53Z) - D-Unet: A Dual-encoder U-Net for Image Splicing Forgery Detection and
Localization [108.8592577019391]
画像スプライシング偽造検出は、画像指紋によって改ざんされた領域と非改ざんされた領域を区別するグローバルバイナリ分類タスクである。
画像スプライシングフォージェリ検出のためのデュアルエンコーダU-Net(D-Unet)という,固定されていないエンコーダと固定エンコーダを用いた新しいネットワークを提案する。
D-Unetと最先端技術の比較実験において、D-Unetは画像レベルおよび画素レベルの検出において他の手法よりも優れていた。
論文 参考訳(メタデータ) (2020-12-03T10:54:02Z) - Dense Label Encoding for Boundary Discontinuity Free Rotation Detection [69.75559390700887]
本稿では,分類に基づく比較的研究の少ない方法論について検討する。
我々は2つの側面でフロンティアを推し進めるための新しい手法を提案する。
航空画像のための大規模公開データセットの実験と視覚解析は,我々のアプローチの有効性を示している。
論文 参考訳(メタデータ) (2020-11-19T05:42:02Z) - SADet: Learning An Efficient and Accurate Pedestrian Detector [68.66857832440897]
本稿では,一段検出器の検出パイプラインに対する一連の最適化手法を提案する。
効率的な歩行者検出のための単発アンカーベース検出器(SADet)を形成する。
構造的には単純だが、VGA解像度の画像に対して最先端の結果と20ドルFPSのリアルタイム速度を示す。
論文 参考訳(メタデータ) (2020-07-26T12:32:38Z) - ZoomNet: Part-Aware Adaptive Zooming Neural Network for 3D Object
Detection [69.68263074432224]
ステレオ画像に基づく3D検出のためのZoomNetという新しいフレームワークを提案する。
ZoomNetのパイプラインは、通常の2Dオブジェクト検出モデルから始まり、左右のバウンディングボックスのペアを取得するために使用される。
さらに,RGB画像のテクスチャキューを多用し,より正確な異質度推定を行うため,適応ズームという概念的に真直ぐなモジュールを導入する。
論文 参考訳(メタデータ) (2020-03-01T17:18:08Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。