論文の概要: A function space perspective on stochastic shape evolution
- arxiv url: http://arxiv.org/abs/2302.05382v1
- Date: Fri, 10 Feb 2023 17:10:32 GMT
- ステータス: 処理完了
- システム内更新日: 2023-02-13 15:17:00.904033
- Title: A function space perspective on stochastic shape evolution
- Title(参考訳): 確率的形状の進化に関する関数空間の視点
- Authors: Elizabeth Baker and Thomas Besnier and Stefan Sommer
- Abstract要約: 本稿では,ソボレフ空間における関数としての形状の記述に基づく新しい形状モデルを提案する。
ノイズの基準フレームとして明示的な正規直交基底を用いると、モデルはノイズのパラメータ化とは無関係である。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Modelling randomness in shape data, for example, the evolution of shapes of
organisms in biology, requires stochastic models of shapes. This paper presents
a new stochastic shape model based on a description of shapes as functions in a
Sobolev space. Using an explicit orthonormal basis as a reference frame for the
noise, the model is independent of the parameterisation of the mesh. We define
the stochastic model, explore its properties, and illustrate examples of
stochastic shape evolutions using the resulting numerical framework.
- Abstract(参考訳): 形状データにおけるランダム性のモデル化、例えば生物学における生物の形状の進化は、形状の確率的モデルを必要とする。
本稿では,ソボレフ空間における形状を関数として記述した新しい確率的形状モデルを提案する。
ノイズの基準フレームとして明示的な正則基底を用いると、モデルはメッシュのパラメータ化とは独立である。
確率モデルを定義し,その性質を探索し,得られた数値的枠組みを用いて確率的形状変化の例を示す。
関連論文リスト
- Latent Space Energy-based Neural ODEs [73.01344439786524]
本稿では,連続時間シーケンスデータを表現するために設計された深部力学モデルの新しいファミリを紹介する。
マルコフ連鎖モンテカルロの最大推定値を用いてモデルを訓練する。
発振システム、ビデオ、実世界の状態シーケンス(MuJoCo)の実験は、学習可能なエネルギーベース以前のODEが既存のものより優れていることを示している。
論文 参考訳(メタデータ) (2024-09-05T18:14:22Z) - Geometric Neural Diffusion Processes [55.891428654434634]
拡散モデルの枠組みを拡張して、無限次元モデリングに一連の幾何学的先行を組み込む。
これらの条件で、生成関数モデルが同じ対称性を持つことを示す。
論文 参考訳(メタデータ) (2023-07-11T16:51:38Z) - Representer Point Selection for Explaining Regularized High-dimensional
Models [105.75758452952357]
本稿では,高次元表現器と呼ぶサンプルベース説明のクラスを紹介する。
私たちのワークホースは、一般化された高次元モデルに対する新しい代表者定理である。
提案手法の実証的性能について,実世界の2進分類データセットと2つの推薦システムデータセットを用いて検討した。
論文 参考訳(メタデータ) (2023-05-31T16:23:58Z) - Landmark-free Statistical Shape Modeling via Neural Flow Deformations [0.5897108307012394]
本稿では,トレーニングインスタンス間の密接な対応を必要とせず,形状変化を学習する新しい形状モデリング手法であるFlowSSMを提案する。
当モデルでは, 遠位端大腿骨・肝臓に先立って, 表現的かつ頑健な形状を提供することで, 最先端の手法よりも優れていた。
論文 参考訳(メタデータ) (2022-09-14T18:17:19Z) - Counting Phases and Faces Using Bayesian Thermodynamic Integration [77.34726150561087]
本稿では,2パラメータ統計力学系における熱力学関数と位相境界の再構成手法を提案する。
提案手法を用いて,IsingモデルとTASEPの分割関数と位相図を正確に再構成する。
論文 参考訳(メタデータ) (2022-05-18T17:11:23Z) - CaDeX: Learning Canonical Deformation Coordinate Space for Dynamic
Surface Representation via Neural Homeomorphism [46.234728261236015]
形状と非剛性の両方の統一的な表現であるCaDeX(Caonical deformation Coordinate Space)を導入する。
我々の新しい変形表現とその実装は単純で効率的であり、サイクルの整合性を保証する。
幅広い変形可能なオブジェクトをモデル化する際の最先端性能を実証する。
論文 参考訳(メタデータ) (2022-03-30T17:59:23Z) - Dynamic multi feature-class Gaussian process models [0.0]
本研究では, 医用画像における形状, ポーズ, 強度特徴の自動学習のための統計的モデリング手法を提案する。
DMFC-GPM (DMFC-GPM) はガウス過程(GP)に基づくモデルであり、線形および非線形の変動を符号化する潜在空間を共有する。
モデル性能の結果は、この新しいモデリングパラダイムが堅牢で、正確で、アクセス可能であり、潜在的な応用があることを示唆している。
論文 参考訳(メタデータ) (2021-12-08T15:12:47Z) - Functional additive regression on shape and form manifolds of planar
curves [0.0]
我々は、形と形を、翻訳、回転、および -- 形状について -- の同値類として定義する。
平面曲線やランドマークの形状や形状のモデルに一般化された加法的回帰を拡張します。
論文 参考訳(メタデータ) (2021-09-06T17:43:32Z) - Learning Equivariant Energy Based Models with Equivariant Stein
Variational Gradient Descent [80.73580820014242]
本稿では,確率モデルに対称性を組み込むことにより,確率密度の効率的なサンプリングと学習の問題に焦点をあてる。
まず、等変シュタイン変分勾配Descentアルゴリズムを導入する。これは、対称性を持つ密度からサンプリングするスタインの同一性に基づく同変サンプリング法である。
我々はエネルギーベースモデルのトレーニングを改善し、スケールアップする新しい方法を提案する。
論文 参考訳(メタデータ) (2021-06-15T01:35:17Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。