論文の概要: Sparse Mutation Decompositions: Fine Tuning Deep Neural Networks with
Subspace Evolution
- arxiv url: http://arxiv.org/abs/2302.05832v1
- Date: Sun, 12 Feb 2023 01:27:26 GMT
- ステータス: 処理完了
- システム内更新日: 2023-02-14 18:15:49.841158
- Title: Sparse Mutation Decompositions: Fine Tuning Deep Neural Networks with
Subspace Evolution
- Title(参考訳): スパース変異分解:サブスペース進化を伴う微調整深層ニューラルネットワーク
- Authors: Tim Whitaker, Darrell Whitley
- Abstract要約: 進化戦略と呼ばれる、神経進化的手法の一般的なサブクラスは、ネットワークを変異させるために高密度ノイズ摂動に依存している。
低次元部分空間に高密度な突然変異を分解することでこの問題を緩和するアプローチを導入する。
我々は、非常に難しいImageNetデータセット上で、神経進化的微調整とアンサンブルを初めて大規模に探索する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Neuroevolution is a promising area of research that combines evolutionary
algorithms with neural networks. A popular subclass of neuroevolutionary
methods, called evolution strategies, relies on dense noise perturbations to
mutate networks, which can be sample inefficient and challenging for large
models with millions of parameters. We introduce an approach to alleviating
this problem by decomposing dense mutations into low-dimensional subspaces.
Restricting mutations in this way can significantly reduce variance as networks
can handle stronger perturbations while maintaining performance, which enables
a more controlled and targeted evolution of deep networks. This approach is
uniquely effective for the task of fine tuning pre-trained models, which is an
increasingly valuable area of research as networks continue to scale in size
and open source models become more widely available. Furthermore, we show how
this work naturally connects to ensemble learning where sparse mutations
encourage diversity among children such that their combined predictions can
reliably improve performance. We conduct the first large scale exploration of
neuroevolutionary fine tuning and ensembling on the notoriously difficult
ImageNet dataset, where we see small generalization improvements with only a
single evolutionary generation using nearly a dozen different deep neural
network architectures.
- Abstract(参考訳): 神経進化は進化アルゴリズムとニューラルネットワークを組み合わせた、有望な研究分野である。
進化戦略と呼ばれる神経進化的手法の一般的なサブクラスは、ネットワークを変異させるために密集したノイズ摂動に依存している。
低次元部分空間に高密度な突然変異を分解することでこの問題を軽減するアプローチを導入する。
このように変異を制限することは、ネットワークがパフォーマンスを維持しながらより強い摂動を処理できるため、分散を著しく減少させる。
このアプローチは、ネットワークのサイズが拡大し、オープンソースモデルがより広く利用可能になるにつれて、研究の貴重な領域である事前訓練モデルの微調整作業に一意に有効である。
さらに、この研究が、スパース変異が子どもの多様性を促進するアンサンブル学習と自然にどのように結びついているかを示し、それらの組み合わせによる予測が性能を確実に向上させることを示す。
我々は、神経進化の微調整とimagenetデータセットのセンセンシングに関する最初の大規模な調査を行い、ほぼ12種類のディープニューラルネットワークアーキテクチャを使用して、単一の進化生成で小さな一般化を実現した。
関連論文リスト
- Message Passing Variational Autoregressive Network for Solving Intractable Ising Models [6.261096199903392]
自己回帰型ニューラルネットワーク、畳み込み型ニューラルネットワーク、リカレントニューラルネットワーク、グラフニューラルネットワークなど、多くのディープニューラルネットワークがIsingモデルの解決に使用されている。
本稿では、スピン変数間の相互作用を効果的に活用できるメッセージパッシング機構を備えた変分自己回帰アーキテクチャを提案する。
新しいネットワークは、アニーリングフレームワークの下で訓練され、いくつかの原型スピンハミルトニアンの解法、特に低温での大きなスピン系において、既存の方法よりも優れている。
論文 参考訳(メタデータ) (2024-04-09T11:27:07Z) - AD-NEv++ : The multi-architecture neuroevolution-based multivariate anomaly detection framework [0.794682109939797]
異常検出ツールと方法は、現代のサイバー物理およびセンサーベースのシステムにおいて重要な分析機能を可能にする。
我々は,サブスペース進化,モデル進化,微調整を相乗的に組み合わせた3段階の神経進化に基づくAD-NEv++を提案する。
我々は、AD-NEv++が全ての異常検出ベンチマークにおいて最先端のGNN(Graph Neural Networks)モデルアーキテクチャを改善し、性能を向上できることを示す。
論文 参考訳(メタデータ) (2024-03-25T08:40:58Z) - Graph Neural Networks for Learning Equivariant Representations of Neural Networks [55.04145324152541]
本稿では,ニューラルネットワークをパラメータの計算グラフとして表現することを提案する。
我々のアプローチは、ニューラルネットワークグラフを多種多様なアーキテクチャでエンコードする単一モデルを可能にする。
本稿では,暗黙的ニューラル表現の分類や編集など,幅広いタスクにおける本手法の有効性を示す。
論文 参考訳(メタデータ) (2024-03-18T18:01:01Z) - Addressing caveats of neural persistence with deep graph persistence [54.424983583720675]
神経の持続性に影響を与える主な要因は,ネットワークの重みのばらつきと大きな重みの空間集中である。
単一層ではなく,ニューラルネットワーク全体へのニューラルネットワークの持続性に基づくフィルタリングの拡張を提案する。
これにより、ネットワーク内の永続的なパスを暗黙的に取り込み、分散に関連する問題を緩和するディープグラフの永続性測定が得られます。
論文 参考訳(メタデータ) (2023-07-20T13:34:11Z) - Spiking Generative Adversarial Network with Attention Scoring Decoding [4.5727987473456055]
スパイクニューラルネットワークは、脳のような処理に近づいた近似を提供する。
我々は複雑な画像を扱うことができるスパイク生成対向ネットワークを構築した。
論文 参考訳(メタデータ) (2023-05-17T14:35:45Z) - Multiobjective Evolutionary Pruning of Deep Neural Networks with
Transfer Learning for improving their Performance and Robustness [15.29595828816055]
本研究は,多目的進化解析アルゴリズムMO-EvoPruneDeepTLを提案する。
我々は、トランスファーラーニングを使用して、遺伝的アルゴリズムによって進化したスパース層に置き換えることで、ディープニューラルネットワークの最後の層を適応します。
実験の結果,提案手法は全ての目的に対して有望な結果が得られ,直接的な関係が示された。
論文 参考訳(メタデータ) (2023-02-20T19:33:38Z) - Spiking neural network for nonlinear regression [68.8204255655161]
スパイクニューラルネットワークは、メモリとエネルギー消費を大幅に削減する可能性を持っている。
彼らは、次世代のニューロモルフィックハードウェアによって活用できる時間的および神経的疎結合を導入する。
スパイキングニューラルネットワークを用いた回帰フレームワークを提案する。
論文 参考訳(メタデータ) (2022-10-06T13:04:45Z) - An Artificial Neural Network Functionalized by Evolution [2.0625936401496237]
フィードフォワードニューラルネットワークのテンソル計算と擬似ダーウィン機構を組み合わせたハイブリッドモデルを提案する。
これにより、戦略の解明、制御問題、パターン認識タスクに適したトポロジを見つけることができる。
特に、このモデルは初期の進化段階に適応したトポロジを提供し、ロボット工学、ビッグデータ、人工生命に応用できる「構造収束」を提供することができる。
論文 参考訳(メタデータ) (2022-05-16T14:49:58Z) - Data-driven emergence of convolutional structure in neural networks [83.4920717252233]
識別タスクを解くニューラルネットワークが、入力から直接畳み込み構造を学習できることを示す。
データモデルを慎重に設計することにより、このパターンの出現は、入力の非ガウス的、高次局所構造によって引き起こされることを示す。
論文 参考訳(メタデータ) (2022-02-01T17:11:13Z) - Epigenetic evolution of deep convolutional models [81.21462458089142]
我々は、より深い畳み込みモデルを進化させるために、これまで提案されていた神経進化の枠組みを構築した。
異なる形状と大きさのカーネルを同一層内に共存させる畳み込み層配置を提案する。
提案したレイアウトにより、畳み込み層内の個々のカーネルのサイズと形状を、対応する新しい突然変異演算子で進化させることができる。
論文 参考訳(メタデータ) (2021-04-12T12:45:16Z) - EvoPose2D: Pushing the Boundaries of 2D Human Pose Estimation using
Accelerated Neuroevolution with Weight Transfer [82.28607779710066]
生物進化にインスパイアされたニューラル・アーキテクチャー・サーチの一形態であるニューラル・エボリューションの2次元ヒューマン・ポーズ・ネットワークの設計への応用について検討する。
本手法は,最先端の手設計ネットワークよりも効率的かつ高精度なネットワーク設計を実現する。
論文 参考訳(メタデータ) (2020-11-17T05:56:16Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。