Deep Orthogonal Hypersphere Compression for Anomaly Detection
- URL: http://arxiv.org/abs/2302.06430v2
- Date: Sun, 5 May 2024 02:45:57 GMT
- Title: Deep Orthogonal Hypersphere Compression for Anomaly Detection
- Authors: Yunhe Zhang, Yan Sun, Jinyu Cai, Jicong Fan,
- Abstract summary: Many well-known and effective anomaly detection methods assume that a reasonable decision boundary has a hypersphere shape.
In this paper, we first propose a novel deep anomaly detection model that improves the original hypersphere learning.
We propose a bi-hypersphere compression method to obtain a hyperspherical shell that yields a more compact decision region than a hyperball.
- Score: 24.520413393132323
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Many well-known and effective anomaly detection methods assume that a reasonable decision boundary has a hypersphere shape, which however is difficult to obtain in practice and is not sufficiently compact, especially when the data are in high-dimensional spaces. In this paper, we first propose a novel deep anomaly detection model that improves the original hypersphere learning through an orthogonal projection layer, which ensures that the training data distribution is consistent with the hypersphere hypothesis, thereby increasing the true positive rate and decreasing the false negative rate. Moreover, we propose a bi-hypersphere compression method to obtain a hyperspherical shell that yields a more compact decision region than a hyperball, which is demonstrated theoretically and numerically. The proposed methods are not confined to common datasets such as image and tabular data, but are also extended to a more challenging but promising scenario, graph-level anomaly detection, which learns graph representation with maximum mutual information between the substructure and global structure features while exploring orthogonal single- or bi-hypersphere anomaly decision boundaries. The numerical and visualization results on benchmark datasets demonstrate the superiority of our methods in comparison to many baselines and state-of-the-art methods.
Related papers
- On Probabilistic Pullback Metrics on Latent Hyperbolic Manifolds [5.724027955589408]
This paper focuses on the hyperbolic manifold, a particularly suitable choice for modeling hierarchical relationships.
We propose augmenting the hyperbolic metric with a pullback metric to account for distortions introduced by theVM's nonlinear mapping.
Through various experiments, we demonstrate that geodesics on the pullback metric not only respect the geometry of the hyperbolic latent space but also align with the underlying data distribution.
arXiv Detail & Related papers (2024-10-28T09:13:00Z) - A Bayesian Approach Toward Robust Multidimensional Ellipsoid-Specific Fitting [0.0]
This work presents a novel and effective method for fitting multidimensional ellipsoids to scattered data in the contamination of noise and outliers.
We incorporate a uniform prior distribution to constrain the search for primitive parameters within an ellipsoidal domain.
We apply it to a wide range of practical applications such as microscopy cell counting, 3D reconstruction, geometric shape approximation, and magnetometer calibration tasks.
arXiv Detail & Related papers (2024-07-27T14:31:51Z) - SphereDiffusion: Spherical Geometry-Aware Distortion Resilient Diffusion Model [63.685132323224124]
Controllable spherical panoramic image generation holds substantial applicative potential across a variety of domains.
In this paper, we introduce a novel framework of SphereDiffusion to address these unique challenges.
Experiments on Structured3D dataset show that SphereDiffusion significantly improves the quality of controllable spherical image generation and relatively reduces around 35% FID on average.
arXiv Detail & Related papers (2024-03-15T06:26:46Z) - Scaling Riemannian Diffusion Models [68.52820280448991]
We show that our method enables us to scale to high dimensional tasks on nontrivial manifold.
We model QCD densities on $SU(n)$ lattices and contrastively learned embeddings on high dimensional hyperspheres.
arXiv Detail & Related papers (2023-10-30T21:27:53Z) - Alignment and Outer Shell Isotropy for Hyperbolic Graph Contrastive
Learning [69.6810940330906]
We propose a novel contrastive learning framework to learn high-quality graph embedding.
Specifically, we design the alignment metric that effectively captures the hierarchical data-invariant information.
We show that in the hyperbolic space one has to address the leaf- and height-level uniformity which are related to properties of trees.
arXiv Detail & Related papers (2023-10-27T15:31:42Z) - Gradient-Based Feature Learning under Structured Data [57.76552698981579]
In the anisotropic setting, the commonly used spherical gradient dynamics may fail to recover the true direction.
We show that appropriate weight normalization that is reminiscent of batch normalization can alleviate this issue.
In particular, under the spiked model with a suitably large spike, the sample complexity of gradient-based training can be made independent of the information exponent.
arXiv Detail & Related papers (2023-09-07T16:55:50Z) - Projected Sliced Wasserstein Autoencoder-based Hyperspectral Images
Anomaly Detection [42.585075865267946]
We propose the Projected Sliced Wasserstein (PSW) autoencoder-based anomaly detection method.
In particular, the computation-friendly eigen-decomposition method is leveraged to find the principal component for slicing the high-dimensional data.
Comprehensive experiments conducted on various real-world hyperspectral anomaly detection benchmarks demonstrate the superior performance of the proposed method.
arXiv Detail & Related papers (2021-12-20T09:21:02Z) - Graph Embedding via High Dimensional Model Representation for
Hyperspectral Images [9.228929858529678]
Learning the manifold structure of remote sensing images is of paramount relevance for modeling and understanding processes.
Manor learning methods have shown excellent performance to deal with hyperspectral image (HSI) analysis.
A common assumption to deal with the problem is that the transformation between the high-dimensional input space and the (typically low) latent space is linear.
The proposed method is compared to manifold learning methods along with its linear counterparts and achieves promising performance in terms of classification accuracy of a representative set of hyperspectral images.
arXiv Detail & Related papers (2021-11-29T16:42:15Z) - Tensor Laplacian Regularized Low-Rank Representation for Non-uniformly
Distributed Data Subspace Clustering [2.578242050187029]
Low-Rank Representation (LRR) suffers from discarding the locality information of data points in subspace clustering.
We propose a hypergraph model to facilitate having a variable number of adjacent nodes and incorporating the locality information of the data.
Experiments on artificial and real datasets demonstrate the higher accuracy and precision of the proposed method.
arXiv Detail & Related papers (2021-03-06T08:22:24Z) - Deep Magnification-Flexible Upsampling over 3D Point Clouds [103.09504572409449]
We propose a novel end-to-end learning-based framework to generate dense point clouds.
We first formulate the problem explicitly, which boils down to determining the weights and high-order approximation errors.
Then, we design a lightweight neural network to adaptively learn unified and sorted weights as well as the high-order refinements.
arXiv Detail & Related papers (2020-11-25T14:00:18Z) - Manifold Learning via Manifold Deflation [105.7418091051558]
dimensionality reduction methods provide a valuable means to visualize and interpret high-dimensional data.
Many popular methods can fail dramatically, even on simple two-dimensional Manifolds.
This paper presents an embedding method for a novel, incremental tangent space estimator that incorporates global structure as coordinates.
Empirically, we show our algorithm recovers novel and interesting embeddings on real-world and synthetic datasets.
arXiv Detail & Related papers (2020-07-07T10:04:28Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.