Preconditioned Score-based Generative Models
- URL: http://arxiv.org/abs/2302.06504v4
- Date: Fri, 28 Feb 2025 07:35:11 GMT
- Title: Preconditioned Score-based Generative Models
- Authors: Hengyuan Ma, Xiatian Zhu, Jianfeng Feng, Li Zhang,
- Abstract summary: An intuitive acceleration method is to reduce the sampling iterations which however causes severe performance degradation.<n>We propose a novel preconditioned diffusion sampling (PDS) method that leverages matrix preconditioning to alleviate the aforementioned problem.<n>PDS preserves the output distribution of the SGM, with no risk of inducing systematical bias to the original sampling process.
- Score: 45.66744783988319
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Score-based generative models (SGMs) have recently emerged as a promising class of generative models. However, a fundamental limitation is that their sampling process is slow due to a need for many (e.g., 2000) iterations of sequential computations. An intuitive acceleration method is to reduce the sampling iterations which however causes severe performance degradation. We assault this problem to the ill-conditioned issues of the Langevin dynamics and reverse diffusion in the sampling process. Under this insight, we propose a novel preconditioned diffusion sampling (PDS) method that leverages matrix preconditioning to alleviate the aforementioned problem. PDS alters the sampling process of a vanilla SGM at marginal extra computation cost and without model retraining. Theoretically, we prove that PDS preserves the output distribution of the SGM, with no risk of inducing systematical bias to the original sampling process. We further theoretically reveal a relation between the parameter of PDS and the sampling iterations, easing the parameter estimation under varying sampling iterations. Extensive experiments on various image datasets with a variety of resolutions and diversity validate that our PDS consistently accelerates off-the-shelf SGMs whilst maintaining the synthesis quality. In particular, PDS can accelerate by up to 28x on more challenging high-resolution (1024x1024) image generation. Compared with the latest generative models (e.g., CLD-SGM and Analytic-DDIM), PDS can achieve the best sampling quality on CIFAR-10 at an FID score of 1.99. Our code is publicly available to foster any further research https://github.com/fudan-zvg/PDS.
Related papers
- Distributional Diffusion Models with Scoring Rules [83.38210785728994]
Diffusion models generate high-quality synthetic data.
generating high-quality outputs requires many discretization steps.
We propose to accomplish sample generation by learning the posterior em distribution of clean data samples.
arXiv Detail & Related papers (2025-02-04T16:59:03Z) - DC-Solver: Improving Predictor-Corrector Diffusion Sampler via Dynamic Compensation [68.55191764622525]
Diffusion models (DPMs) have shown remarkable performance in visual synthesis but are computationally expensive due to the need for multiple evaluations during the sampling.
Recent predictor synthesis-or diffusion samplers have significantly reduced the required number of evaluations, but inherently suffer from a misalignment issue.
We introduce a new fast DPM sampler called DC-CPRr, which leverages dynamic compensation to mitigate the misalignment.
arXiv Detail & Related papers (2024-09-05T17:59:46Z) - EM Distillation for One-step Diffusion Models [65.57766773137068]
We propose a maximum likelihood-based approach that distills a diffusion model to a one-step generator model with minimal loss of quality.
We develop a reparametrized sampling scheme and a noise cancellation technique that together stabilizes the distillation process.
arXiv Detail & Related papers (2024-05-27T05:55:22Z) - Score-based Generative Models with Adaptive Momentum [40.84399531998246]
We propose an adaptive momentum sampling method to accelerate the transforming process.
We show that our method can produce more faithful images/graphs in small sampling steps with 2 to 5 times speed up.
arXiv Detail & Related papers (2024-05-22T15:20:27Z) - AdjointDPM: Adjoint Sensitivity Method for Gradient Backpropagation of Diffusion Probabilistic Models [103.41269503488546]
Existing customization methods require access to multiple reference examples to align pre-trained diffusion probabilistic models with user-provided concepts.
This paper aims to address the challenge of DPM customization when the only available supervision is a differentiable metric defined on the generated contents.
We propose a novel method AdjointDPM, which first generates new samples from diffusion models by solving the corresponding probability-flow ODEs.
It then uses the adjoint sensitivity method to backpropagate the gradients of the loss to the models' parameters.
arXiv Detail & Related papers (2023-07-20T09:06:21Z) - Alleviating Exposure Bias in Diffusion Models through Sampling with Shifted Time Steps [23.144083737873263]
Diffusion Probabilistic Models (DPM) have shown remarkable efficacy in the synthesis of high-quality images.
Previous work has attempted to mitigate this issue by perturbing inputs during training.
We propose a novel sampling method that we propose, without retraining the model.
arXiv Detail & Related papers (2023-05-24T21:39:27Z) - Fast Inference in Denoising Diffusion Models via MMD Finetuning [23.779985842891705]
We present MMD-DDM, a novel method for fast sampling of diffusion models.
Our approach is based on the idea of using the Maximum Mean Discrepancy (MMD) to finetune the learned distribution with a given budget of timesteps.
Our findings show that the proposed method is able to produce high-quality samples in a fraction of the time required by widely-used diffusion models.
arXiv Detail & Related papers (2023-01-19T09:48:07Z) - Accelerating Score-based Generative Models with Preconditioned Diffusion
Sampling [36.02321871608158]
We propose a model-agnostic preconditioned diffusion sampling (PDS) method that leverages matrix preconditioning to alleviate the problem.
PDS consistently accelerates off-the-shelf SGMs whilst maintaining the synthesis quality.
In particular, PDS can accelerate by up to 29x on more challenging high resolution (1024x1024) image generation.
arXiv Detail & Related papers (2022-07-05T17:55:42Z) - Accelerating Score-based Generative Models for High-Resolution Image
Synthesis [42.076244561541706]
Score-based generative models (SGMs) have recently emerged as a promising class of generative models.
In this work, we consider the acceleration of high-resolution generation with SGMs.
We introduce a novel Target Distribution Sampling Aware (TDAS) method by leveraging the structural priors in space and frequency domains.
arXiv Detail & Related papers (2022-06-08T17:41:14Z) - Pseudo Numerical Methods for Diffusion Models on Manifolds [77.40343577960712]
Denoising Diffusion Probabilistic Models (DDPMs) can generate high-quality samples such as image and audio samples.
DDPMs require hundreds to thousands of iterations to produce final samples.
We propose pseudo numerical methods for diffusion models (PNDMs)
PNDMs can generate higher quality synthetic images with only 50 steps compared with 1000-step DDIMs (20x speedup)
arXiv Detail & Related papers (2022-02-20T10:37:52Z) - Denoising Diffusion Implicit Models [117.03720513930335]
We present denoising diffusion implicit models (DDIMs) for iterative implicit probabilistic models with the same training procedure as DDPMs.
DDIMs can produce high quality samples $10 times$ to $50 times$ faster in terms of wall-clock time compared to DDPMs.
arXiv Detail & Related papers (2020-10-06T06:15:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.