Model order reduction of deep structured state-space models: A system-theoretic approach
- URL: http://arxiv.org/abs/2403.14833v1
- Date: Thu, 21 Mar 2024 21:05:59 GMT
- Title: Model order reduction of deep structured state-space models: A system-theoretic approach
- Authors: Marco Forgione, Manas Mejari, Dario Piga,
- Abstract summary: deep structured state-space models offer high predictive performance.
The learned representations often suffer from excessively large model orders, which render them unsuitable for control design purposes.
We introduce two regularization terms which can be incorporated into the training loss for improved model order reduction.
The presented regularizers lead to advantages in terms of parsimonious representations and faster inference resulting from the reduced order models.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: With a specific emphasis on control design objectives, achieving accurate system modeling with limited complexity is crucial in parametric system identification. The recently introduced deep structured state-space models (SSM), which feature linear dynamical blocks as key constituent components, offer high predictive performance. However, the learned representations often suffer from excessively large model orders, which render them unsuitable for control design purposes. The current paper addresses this challenge by means of system-theoretic model order reduction techniques that target the linear dynamical blocks of SSMs. We introduce two regularization terms which can be incorporated into the training loss for improved model order reduction. In particular, we consider modal $\ell_1$ and Hankel nuclear norm regularization to promote sparsity, allowing one to retain only the relevant states without sacrificing accuracy. The presented regularizers lead to advantages in terms of parsimonious representations and faster inference resulting from the reduced order models. The effectiveness of the proposed methodology is demonstrated using real-world ground vibration data from an aircraft.
Related papers
- Bridging Autoencoders and Dynamic Mode Decomposition for Reduced-order Modeling and Control of PDEs [12.204795159651589]
This paper explores a deep autocodingen learning method for reduced-order modeling and control of dynamical systems governed by Ptemporals.
We first show that an objective for learning a linear autoen reduced-order model can be formulated to yield a solution closely resembling the result obtained through the dynamic mode decomposition with control algorithm.
We then extend this linear autoencoding architecture to a deep autocoding framework, enabling the development of a nonlinear reduced-order model.
arXiv Detail & Related papers (2024-09-09T22:56:40Z) - Revisiting SMoE Language Models by Evaluating Inefficiencies with Task Specific Expert Pruning [78.72226641279863]
Sparse Mixture of Expert (SMoE) models have emerged as a scalable alternative to dense models in language modeling.
Our research explores task-specific model pruning to inform decisions about designing SMoE architectures.
We introduce an adaptive task-aware pruning technique UNCURL to reduce the number of experts per MoE layer in an offline manner post-training.
arXiv Detail & Related papers (2024-09-02T22:35:03Z) - Symplectic Autoencoders for Model Reduction of Hamiltonian Systems [0.0]
It is crucial to preserve the symplectic structure associated with the system in order to ensure long-term numerical stability.
We propose a new neural network architecture in the spirit of autoencoders, which are established tools for dimension reduction.
In order to train the network, a non-standard gradient descent approach is applied.
arXiv Detail & Related papers (2023-12-15T18:20:25Z) - Precision-Recall Divergence Optimization for Generative Modeling with
GANs and Normalizing Flows [54.050498411883495]
We develop a novel training method for generative models, such as Generative Adversarial Networks and Normalizing Flows.
We show that achieving a specified precision-recall trade-off corresponds to minimizing a unique $f$-divergence from a family we call the textitPR-divergences.
Our approach improves the performance of existing state-of-the-art models like BigGAN in terms of either precision or recall when tested on datasets such as ImageNet.
arXiv Detail & Related papers (2023-05-30T10:07:17Z) - Low-dimensional Data-based Surrogate Model of a Continuum-mechanical
Musculoskeletal System Based on Non-intrusive Model Order Reduction [0.0]
Non-traditional approaches such as surrogate modeling using data-driven model order reduction are used to make high-fidelity models more widely available anyway.
We demonstrate the benefits of the surrogate modeling approach on a complex finite element model of a human upper-arm.
arXiv Detail & Related papers (2023-02-13T17:14:34Z) - Evolve Smoothly, Fit Consistently: Learning Smooth Latent Dynamics For
Advection-Dominated Systems [14.553972457854517]
We present a data-driven, space-time continuous framework to learn surrogatemodels for complex physical systems.
We leverage the expressive power of the network and aspecially designed consistency-inducing regularization to obtain latent trajectories that are both low-dimensional and smooth.
arXiv Detail & Related papers (2023-01-25T03:06:03Z) - Toward Certified Robustness Against Real-World Distribution Shifts [65.66374339500025]
We train a generative model to learn perturbations from data and define specifications with respect to the output of the learned model.
A unique challenge arising from this setting is that existing verifiers cannot tightly approximate sigmoid activations.
We propose a general meta-algorithm for handling sigmoid activations which leverages classical notions of counter-example-guided abstraction refinement.
arXiv Detail & Related papers (2022-06-08T04:09:13Z) - Nonlinear proper orthogonal decomposition for convection-dominated flows [0.0]
We propose an end-to-end Galerkin-free model combining autoencoders with long short-term memory networks for dynamics.
Our approach not only improves the accuracy, but also significantly reduces the computational cost of training and testing.
arXiv Detail & Related papers (2021-10-15T18:05:34Z) - Stabilizing Equilibrium Models by Jacobian Regularization [151.78151873928027]
Deep equilibrium networks (DEQs) are a new class of models that eschews traditional depth in favor of finding the fixed point of a single nonlinear layer.
We propose a regularization scheme for DEQ models that explicitly regularizes the Jacobian of the fixed-point update equations to stabilize the learning of equilibrium models.
We show that this regularization adds only minimal computational cost, significantly stabilizes the fixed-point convergence in both forward and backward passes, and scales well to high-dimensional, realistic domains.
arXiv Detail & Related papers (2021-06-28T00:14:11Z) - Dynamic Model Pruning with Feedback [64.019079257231]
We propose a novel model compression method that generates a sparse trained model without additional overhead.
We evaluate our method on CIFAR-10 and ImageNet, and show that the obtained sparse models can reach the state-of-the-art performance of dense models.
arXiv Detail & Related papers (2020-06-12T15:07:08Z) - Adaptive Control and Regret Minimization in Linear Quadratic Gaussian
(LQG) Setting [91.43582419264763]
We propose LqgOpt, a novel reinforcement learning algorithm based on the principle of optimism in the face of uncertainty.
LqgOpt efficiently explores the system dynamics, estimates the model parameters up to their confidence interval, and deploys the controller of the most optimistic model.
arXiv Detail & Related papers (2020-03-12T19:56:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.