論文の概要: The Role of Semantic Parsing in Understanding Procedural Text
- arxiv url: http://arxiv.org/abs/2302.06829v1
- Date: Tue, 14 Feb 2023 04:59:33 GMT
- ステータス: 処理完了
- システム内更新日: 2023-02-15 16:31:09.954714
- Title: The Role of Semantic Parsing in Understanding Procedural Text
- Title(参考訳): 手続き文理解における意味的構文解析の役割
- Authors: Hossein Rajaby Faghihi, Parisa Kordjamshidi, Choh Man Teng, and James
Allen
- Abstract要約: 我々は、意味解析知識の2つの源として、深い意味論(TRIPS)と意味論的役割のラベル付けを考える。
本稿では,記号解析に基づく手続き推論フレームワーク PROPOLIS を提案する。
- 参考スコア(独自算出の注目度): 15.318057744502822
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this paper, we investigate whether symbolic semantic representations,
extracted from deep semantic parsers, can help reasoning over the states of
involved entities in a procedural text. We consider a deep semantic
parser~(TRIPS) and semantic role labeling as two sources of semantic parsing
knowledge. First, we propose PROPOLIS, a symbolic parsing-based procedural
reasoning framework. Second, we integrate semantic parsing information into
state-of-the-art neural models to conduct procedural reasoning. Our experiments
indicate that explicitly incorporating such semantic knowledge improves
procedural understanding. This paper presents new metrics for evaluating
procedural reasoning tasks that clarify the challenges and identify differences
among neural, symbolic, and integrated models.
- Abstract(参考訳): 本稿では,深い意味解析から抽出された記号的意味表現が,手続き的テキストにおける関連エンティティの状態の推論に有効かどうかを考察する。
我々は,意味解析知識の2つの源として,深い意味解析~(TRIPS)と意味的役割ラベルを考える。
まず,記号解析に基づく手続き推論フレームワーク PROPOLIS を提案する。
第2に,意味解析情報を最先端のニューラルモデルに統合し,手続き的推論を行う。
このような意味的知識を明示的に取り入れることで手続き的理解が向上することを示す。
本稿では,課題を明確にし,ニューラルモデル,シンボリックモデル,統合モデルの違いを識別する手続き的推論タスクを評価するための新しい指標を提案する。
関連論文リスト
- H-STAR: LLM-driven Hybrid SQL-Text Adaptive Reasoning on Tables [56.73919743039263]
本稿では,2段階のプロセスにシンボル的アプローチと意味的アプローチ(テキスト的アプローチ)を統合し,制約に対処する新しいアルゴリズムを提案する。
実験の結果,H-STARは3つの質問応答(QA)と事実検証データセットにおいて,最先端の手法を大幅に上回っていることがわかった。
論文 参考訳(メタデータ) (2024-06-29T21:24:19Z) - Neural Semantic Parsing with Extremely Rich Symbolic Meaning Representations [7.774674200374255]
分類学的階層におけるその位置に基づく概念のための新しい構成記号表現を導入する。
この表現はよりリッチな意味情報を提供し、解釈可能性を高める。
実験結果から,より豊かで複雑な意味表現に基づいて訓練された分類モデルは,評価基準を用いて従来のモデルに若干従属するが,語彙外概念を扱う場合よりも優れることがわかった。
論文 参考訳(メタデータ) (2024-04-19T08:06:01Z) - Pixel Sentence Representation Learning [67.4775296225521]
本研究では,視覚表現学習プロセスとして,文レベルのテキスト意味論の学習を概念化する。
タイポスや単語順シャッフルのような視覚的に接地されたテキスト摂動法を採用し、人間の認知パターンに共鳴し、摂動を連続的に認識できるようにする。
我々のアプローチは、大規模に教師なしのトピックアライメントトレーニングと自然言語推論監督によってさらに強化されている。
論文 参考訳(メタデータ) (2024-02-13T02:46:45Z) - Semantic Parsing for Question Answering over Knowledge Graphs [3.10647754288788]
本稿では,知識グラフ上での質問応答のためのグラフ・ツー・セグメンテーション・マッピングを用いた新しい手法を提案する。
この手法は、これらの発話を解釈するための重要なアプローチである意味解析に焦点を当てている。
我々のフレームワークはルールベースとニューラルベースを組み合わせて意味セグメントのシーケンスを解析・構築する。
論文 参考訳(メタデータ) (2023-12-01T20:45:06Z) - Agentivit\`a e telicit\`a in GilBERTo: implicazioni cognitive [77.71680953280436]
本研究の目的は,トランスフォーマーに基づくニューラルネットワークモデルが語彙意味論を推論するかどうかを検討することである。
考慮される意味的性質は、テリシティ(定性とも組み合わされる)と作用性である。
論文 参考訳(メタデータ) (2023-07-06T10:52:22Z) - Supporting Vision-Language Model Inference with Confounder-pruning Knowledge Prompt [71.77504700496004]
視覚言語モデルは、オープンセットの視覚概念を扱うために、画像とテキストのペアを共通の空間に整列させることで事前訓練される。
事前訓練されたモデルの転送可能性を高めるため、最近の研究では、固定または学習可能なプロンプトが採用されている。
しかし、どのようにして、どのプロンプトが推論性能を改善するのかは、まだ不明である。
論文 参考訳(メタデータ) (2022-05-23T07:51:15Z) - Design considerations for a hierarchical semantic compositional
framework for medical natural language understanding [3.7003326903946756]
NLP性能曲線を跳躍する試みとして,人間の認知のメカニズムにインスパイアされた枠組みについて述べる。
セマンティックメモリ、セマンティックコンポジション、セマンティックアクティベーションを含む4つの重要な側面からの洞察について述べる。
本稿では,自由文文を意味の論理的表現に変換するための生成意味モデルと関連する意味モデルの設計について論じる。
論文 参考訳(メタデータ) (2022-04-05T09:04:34Z) - Infusing Finetuning with Semantic Dependencies [62.37697048781823]
シンタックスとは異なり、セマンティクスは今日の事前訓練モデルによって表面化されないことを示す。
次に、畳み込みグラフエンコーダを使用して、タスク固有の微調整にセマンティック解析を明示的に組み込む。
論文 参考訳(メタデータ) (2020-12-10T01:27:24Z) - Semantics-Aware Inferential Network for Natural Language Understanding [79.70497178043368]
このようなモチベーションを満たすために,セマンティックス対応推論ネットワーク(SAIN)を提案する。
SAINの推論モジュールは、明示的な文脈的セマンティクスを補完的な入力として、セマンティクス上の一連の推論ステップを可能にする。
本モデルでは,機械読解や自然言語推論など11タスクの大幅な改善を実現している。
論文 参考訳(メタデータ) (2020-04-28T07:24:43Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。