論文の概要: AI Security Threats against Pervasive Robotic Systems: A Course for Next
Generation Cybersecurity Workforce
- arxiv url: http://arxiv.org/abs/2302.07953v1
- Date: Wed, 15 Feb 2023 21:21:20 GMT
- ステータス: 処理完了
- システム内更新日: 2023-02-17 15:48:08.793927
- Title: AI Security Threats against Pervasive Robotic Systems: A Course for Next
Generation Cybersecurity Workforce
- Title(参考訳): 汎用ロボットシステムに対するaiセキュリティの脅威: 次世代サイバーセキュリティ労働者のためのコース
- Authors: Sudip Mittal, Jingdao Chen
- Abstract要約: ロボティクス、自動化、および関連する人工知能(AI)システムは、セキュリティ、安全性、正確性、信頼に関する懸念を広めている。
これらのシステムのセキュリティは、プライバシーの侵害、重要な操作妨害、身体の危害につながるサイバー攻撃を防ぐためにますます重要になっている。
このコースの説明には、"広汎なロボットシステムに対するAIセキュリティ脅威"に関する7つの自己完結型および適応型モジュールの詳細が含まれている。
- 参考スコア(独自算出の注目度): 0.9137554315375919
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Robotics, automation, and related Artificial Intelligence (AI) systems have
become pervasive bringing in concerns related to security, safety, accuracy,
and trust. With growing dependency on physical robots that work in close
proximity to humans, the security of these systems is becoming increasingly
important to prevent cyber-attacks that could lead to privacy invasion,
critical operations sabotage, and bodily harm. The current shortfall of
professionals who can defend such systems demands development and integration
of such a curriculum. This course description includes details about seven
self-contained and adaptive modules on "AI security threats against pervasive
robotic systems". Topics include: 1) Introduction, examples of attacks, and
motivation; 2) - Robotic AI attack surfaces and penetration testing; 3) -
Attack patterns and security strategies for input sensors; 4) - Training
attacks and associated security strategies; 5) - Inference attacks and
associated security strategies; 6) - Actuator attacks and associated security
strategies; and 7) - Ethics of AI, robotics, and cybersecurity.
- Abstract(参考訳): ロボティクス、自動化、および関連する人工知能(AI)システムは、セキュリティ、安全性、正確性、信頼に関する懸念を広めている。
人間の身近に働く物理的ロボットへの依存が高まる中、これらのシステムのセキュリティは、プライバシー侵害、重大な操作の妨害、身体的危害につながるサイバー攻撃を防ぐためにますます重要になっている。
こうした制度を擁護できる専門家の現在の不足は、そのようなカリキュラムの開発と統合を必要としている。
このコースの説明には、"広汎なロボットシステムに対するAIセキュリティ脅威"に関する7つの自己完結型および適応型モジュールの詳細が含まれている。
トピックは以下の通り。
1)導入,攻撃例,動機
2) - ロボットAIによる攻撃面と浸透試験; 3)入力センサのアタックパターンとセキュリティ戦略
4) 攻撃と関連するセキュリティ戦略の訓練
5) - 推論攻撃と関連するセキュリティ戦略。
6) - アクチュエータ攻撃及び関連するセキュリティ戦略
7) - AI、ロボティクス、サイバーセキュリティの倫理。
関連論文リスト
- Exploring the Adversarial Vulnerabilities of Vision-Language-Action Models in Robotics [70.93622520400385]
本稿では,VLAに基づくロボットシステムのロバスト性を体系的に評価する。
本研究では,ロボット行動の不安定化に空間的基盤を活用する,標的のない位置認識型攻撃目標を提案する。
また、カメラの視野内に小さなカラフルなパッチを配置し、デジタル環境と物理環境の両方で効果的に攻撃を実行する逆パッチ生成アプローチを設計する。
論文 参考訳(メタデータ) (2024-11-18T01:52:20Z) - Attack Atlas: A Practitioner's Perspective on Challenges and Pitfalls in Red Teaming GenAI [52.138044013005]
生成AI、特に大規模言語モデル(LLM)は、製品アプリケーションにますます統合される。
新たな攻撃面と脆弱性が出現し、自然言語やマルチモーダルシステムにおける敵の脅威に焦点を当てる。
レッドチーム(英語版)はこれらのシステムの弱点を積極的に識別する上で重要となり、ブルーチーム(英語版)はそのような敵の攻撃から保護する。
この研究は、生成AIシステムの保護のための学術的な洞察と実践的なセキュリティ対策のギャップを埋めることを目的としている。
論文 参考訳(メタデータ) (2024-09-23T10:18:10Z) - Is Generative AI the Next Tactical Cyber Weapon For Threat Actors? Unforeseen Implications of AI Generated Cyber Attacks [0.0]
本稿では,AIの誤用によるエスカレート脅威,特にLarge Language Models(LLMs)の使用について述べる。
一連の制御された実験を通じて、これらのモデルがどのようにして倫理的およびプライバシー保護を回避し、効果的にサイバー攻撃を発生させるかを実証する。
私たちはまた、サイバー攻撃の自動化と実行のために特別に設計されたカスタマイズされた微調整のLLMであるOccupy AIを紹介します。
論文 参考訳(メタデータ) (2024-08-23T02:56:13Z) - Interoperability and Explicable AI-based Zero-Day Attacks Detection Process in Smart Community [0.0]
本稿では,6Gモバイル通信,インターネット・オブ・エコノミクス(IoE),人工知能(AI),スマートコントラクトを組み込んだWPA3プロトコルベースのWiFi-8が連携して,既知の攻撃ベクトルを防止し,ゼロデイ攻撃に対する保護を実現する方法について説明する。
論文 参考訳(メタデータ) (2024-08-06T03:11:36Z) - Artificial Intelligence as the New Hacker: Developing Agents for Offensive Security [0.0]
本稿では,人工知能(AI)の攻撃的サイバーセキュリティへの統合について検討する。
サイバー攻撃をシミュレートし実行するために設計された、自律的なAIエージェントであるReaperAIを開発している。
ReaperAIは、セキュリティ脆弱性を自律的に識別し、悪用し、分析する可能性を実証する。
論文 参考訳(メタデータ) (2024-05-09T18:15:12Z) - Managing extreme AI risks amid rapid progress [171.05448842016125]
我々は、大規模社会被害、悪意のある使用、自律型AIシステムに対する人間の制御の不可逆的な喪失を含むリスクについて説明する。
このようなリスクがどのように発生し、どのように管理するかについては、合意の欠如があります。
現在のガバナンスイニシアチブには、誤用や無謀を防ぎ、自律システムにほとんど対処するメカニズムや制度が欠けている。
論文 参考訳(メタデータ) (2023-10-26T17:59:06Z) - Security Considerations in AI-Robotics: A Survey of Current Methods,
Challenges, and Opportunities [4.466887678364242]
本稿では,AI-ロボティクスシステムにおけるセキュリティ問題への対処の必要性から,3次元にわたる包括的調査と分類について述べる。
まず、潜在的な攻撃面を調査し、防御戦略を緩和することから始める。
次に、依存関係や心理的影響などの倫理的問題や、これらのシステムに対する説明責任に関する法的懸念を掘り下げる。
論文 参考訳(メタデータ) (2023-10-12T17:54:20Z) - When Authentication Is Not Enough: On the Security of Behavioral-Based Driver Authentication Systems [53.2306792009435]
我々はランダムフォレストとリカレントニューラルネットワークアーキテクチャに基づく2つの軽量ドライバ認証システムを開発した。
我々は,SMARTCANとGANCANという2つの新しいエスケープアタックを開発することで,これらのシステムに対する攻撃を最初に提案する。
コントリビューションを通じて、これらのシステムを安全に採用する実践者を支援し、車の盗難を軽減し、ドライバーのセキュリティを高める。
論文 参考訳(メタデータ) (2023-06-09T14:33:26Z) - CTI4AI: Threat Intelligence Generation and Sharing after Red Teaming AI
Models [0.0]
システムの脆弱性、潜在的な脅威、システムの堅牢性を高める特性を識別する必要がある。
二次的なニーズは、このAIセキュリティ脅威インテリジェンスを、モデル開発者、ユーザ、AI/MLセキュリティ専門家など、さまざまな利害関係者間で共有することである。
本稿では,AI/ML固有の脆弱性と脅威知能を体系的に識別し,共有する必要性を克服するために,プロトタイプシステムCTI4AIを作成し,記述する。
論文 参考訳(メタデータ) (2022-08-16T00:16:58Z) - Proceedings of the Artificial Intelligence for Cyber Security (AICS)
Workshop at AAAI 2022 [55.573187938617636]
ワークショップは、サイバーセキュリティの問題へのAIの適用に焦点を当てる。
サイバーシステムは大量のデータを生成し、これを効果的に活用することは人間の能力を超えます。
論文 参考訳(メタデータ) (2022-02-28T18:27:41Z) - Adversarial Machine Learning Attacks and Defense Methods in the Cyber
Security Domain [58.30296637276011]
本稿では,機械学習技術に基づくセキュリティソリューションに対する敵攻撃に関する最新の研究を要約する。
サイバーセキュリティドメインでエンドツーエンドの敵攻撃を実装するという、ユニークな課題を議論するのは、これが初めてである。
論文 参考訳(メタデータ) (2020-07-05T18:22:40Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。