Balancing Privacy Protection and Interpretability in Federated Learning
- URL: http://arxiv.org/abs/2302.08044v1
- Date: Thu, 16 Feb 2023 02:58:22 GMT
- Title: Balancing Privacy Protection and Interpretability in Federated Learning
- Authors: Zhe Li, Honglong Chen, Zhichen Ni, Huajie Shao
- Abstract summary: Federated learning (FL) aims to collaboratively train the global model in a distributed manner by sharing the model parameters from local clients to a central server.
Recent studies have illustrated that FL still suffers from information leakage as adversaries try to recover the training data by analyzing shared parameters from local clients.
We propose a simple yet effective adaptive differential privacy (ADP) mechanism that selectively adds noisy perturbations to the gradients of client models in FL.
- Score: 8.759803233734624
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Federated learning (FL) aims to collaboratively train the global model in a
distributed manner by sharing the model parameters from local clients to a
central server, thereby potentially protecting users' private information.
Nevertheless, recent studies have illustrated that FL still suffers from
information leakage as adversaries try to recover the training data by
analyzing shared parameters from local clients. To deal with this issue,
differential privacy (DP) is adopted to add noise to the gradients of local
models before aggregation. It, however, results in the poor performance of
gradient-based interpretability methods, since some weights capturing the
salient region in feature map will be perturbed. To overcome this problem, we
propose a simple yet effective adaptive differential privacy (ADP) mechanism
that selectively adds noisy perturbations to the gradients of client models in
FL. We also theoretically analyze the impact of gradient perturbation on the
model interpretability. Finally, extensive experiments on both IID and Non-IID
data demonstrate that the proposed ADP can achieve a good trade-off between
privacy and interpretability in FL.
Related papers
- Collaboratively Learning Federated Models from Noisy Decentralized Data [21.3209961590772]
Federated learning (FL) has emerged as a prominent method for collaboratively training machine learning models using local data from edge devices.
We focus on addressing the problem of noisy data in the input space, an under-explored area compared to the label noise.
We propose a noise-aware FL aggregation method, namely Federated Noise-Sifting (FedNS), which can be used as a plug-in approach in conjunction with widely used FL strategies.
arXiv Detail & Related papers (2024-09-03T18:00:51Z) - Enhancing Federated Learning with Adaptive Differential Privacy and Priority-Based Aggregation [0.0]
Federated learning (FL) develops global models without direct access to local datasets.
It is possible to access the model updates transferred between clients and servers, potentially revealing sensitive local information to adversaries.
Differential privacy (DP) offers a promising approach to addressing this issue by adding noise to the parameters.
We propose a personalized DP framework that injects noise based on clients' relative impact factors and aggregates parameters.
arXiv Detail & Related papers (2024-06-26T16:55:07Z) - Mitigating Disparate Impact of Differential Privacy in Federated Learning through Robust Clustering [4.768272342753616]
Federated Learning (FL) is a decentralized machine learning (ML) approach that keeps data localized and often incorporates Differential Privacy (DP) to enhance privacy guarantees.
Recent work has attempted to address performance fairness in vanilla FL through clustering, but this method remains sensitive and prone to errors.
We propose a novel clustered DPFL algorithm designed to effectively identify clients' clusters in highly heterogeneous settings.
arXiv Detail & Related papers (2024-05-29T17:03:31Z) - FedImpro: Measuring and Improving Client Update in Federated Learning [77.68805026788836]
Federated Learning (FL) models often experience client drift caused by heterogeneous data.
We present an alternative perspective on client drift and aim to mitigate it by generating improved local models.
arXiv Detail & Related papers (2024-02-10T18:14:57Z) - PS-FedGAN: An Efficient Federated Learning Framework Based on Partially
Shared Generative Adversarial Networks For Data Privacy [56.347786940414935]
Federated Learning (FL) has emerged as an effective learning paradigm for distributed computation.
This work proposes a novel FL framework that requires only partial GAN model sharing.
Named as PS-FedGAN, this new framework enhances the GAN releasing and training mechanism to address heterogeneous data distributions.
arXiv Detail & Related papers (2023-05-19T05:39:40Z) - Personalized Federated Learning under Mixture of Distributions [98.25444470990107]
We propose a novel approach to Personalized Federated Learning (PFL), which utilizes Gaussian mixture models (GMM) to fit the input data distributions across diverse clients.
FedGMM possesses an additional advantage of adapting to new clients with minimal overhead, and it also enables uncertainty quantification.
Empirical evaluations on synthetic and benchmark datasets demonstrate the superior performance of our method in both PFL classification and novel sample detection.
arXiv Detail & Related papers (2023-05-01T20:04:46Z) - FedLAP-DP: Federated Learning by Sharing Differentially Private Loss Approximations [53.268801169075836]
We propose FedLAP-DP, a novel privacy-preserving approach for federated learning.
A formal privacy analysis demonstrates that FedLAP-DP incurs the same privacy costs as typical gradient-sharing schemes.
Our approach presents a faster convergence speed compared to typical gradient-sharing methods.
arXiv Detail & Related papers (2023-02-02T12:56:46Z) - Acceleration of Federated Learning with Alleviated Forgetting in Local
Training [61.231021417674235]
Federated learning (FL) enables distributed optimization of machine learning models while protecting privacy.
We propose FedReg, an algorithm to accelerate FL with alleviated knowledge forgetting in the local training stage.
Our experiments demonstrate that FedReg not only significantly improves the convergence rate of FL, especially when the neural network architecture is deep.
arXiv Detail & Related papers (2022-03-05T02:31:32Z) - Do Gradient Inversion Attacks Make Federated Learning Unsafe? [70.0231254112197]
Federated learning (FL) allows the collaborative training of AI models without needing to share raw data.
Recent works on the inversion of deep neural networks from model gradients raised concerns about the security of FL in preventing the leakage of training data.
In this work, we show that these attacks presented in the literature are impractical in real FL use-cases and provide a new baseline attack.
arXiv Detail & Related papers (2022-02-14T18:33:12Z) - Dubhe: Towards Data Unbiasedness with Homomorphic Encryption in
Federated Learning Client Selection [16.975086164684882]
Federated learning (FL) is a distributed machine learning paradigm that allows clients to collaboratively train a model over their own local data.
We mathematically demonstrate the cause of performance degradation in FL and examine the performance of FL over various datasets.
We propose a pluggable system-level client selection method named Dubhe, which allows clients to proactively participate in training, preserving their privacy with the assistance of HE.
arXiv Detail & Related papers (2021-09-08T13:00:46Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.