Enhancing Federated Learning with Adaptive Differential Privacy and Priority-Based Aggregation
- URL: http://arxiv.org/abs/2406.18491v1
- Date: Wed, 26 Jun 2024 16:55:07 GMT
- Title: Enhancing Federated Learning with Adaptive Differential Privacy and Priority-Based Aggregation
- Authors: Mahtab Talaei, Iman Izadi,
- Abstract summary: Federated learning (FL) develops global models without direct access to local datasets.
It is possible to access the model updates transferred between clients and servers, potentially revealing sensitive local information to adversaries.
Differential privacy (DP) offers a promising approach to addressing this issue by adding noise to the parameters.
We propose a personalized DP framework that injects noise based on clients' relative impact factors and aggregates parameters.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Federated learning (FL), a novel branch of distributed machine learning (ML), develops global models through a private procedure without direct access to local datasets. However, it is still possible to access the model updates (gradient updates of deep neural networks) transferred between clients and servers, potentially revealing sensitive local information to adversaries using model inversion attacks. Differential privacy (DP) offers a promising approach to addressing this issue by adding noise to the parameters. On the other hand, heterogeneities in data structure, storage, communication, and computational capabilities of devices can cause convergence problems and delays in developing the global model. A personalized weighted averaging of local parameters based on the resources of each device can yield a better aggregated model in each round. In this paper, to efficiently preserve privacy, we propose a personalized DP framework that injects noise based on clients' relative impact factors and aggregates parameters while considering heterogeneities and adjusting properties. To fulfill the DP requirements, we first analyze the convergence boundary of the FL algorithm when impact factors are personalized and fixed throughout the learning process. We then further study the convergence property considering time-varying (adaptive) impact factors.
Related papers
- Modality Alignment Meets Federated Broadcasting [9.752555511824593]
Federated learning (FL) has emerged as a powerful approach to safeguard data privacy by training models across distributed edge devices without centralizing local data.
This paper introduces a novel FL framework leveraging modality alignment, where a text encoder resides on the server, and image encoders operate on local devices.
arXiv Detail & Related papers (2024-11-24T13:30:03Z) - PeFAD: A Parameter-Efficient Federated Framework for Time Series Anomaly Detection [51.20479454379662]
We propose a.
Federated Anomaly Detection framework named PeFAD with the increasing privacy concerns.
We conduct extensive evaluations on four real datasets, where PeFAD outperforms existing state-of-the-art baselines by up to 28.74%.
arXiv Detail & Related papers (2024-06-04T13:51:08Z) - Adaptive Differential Privacy in Federated Learning: A Priority-Based
Approach [0.0]
Federated learning (FL) develops global models without direct access to local datasets.
DP offers a framework that gives a privacy guarantee by adding certain amounts of noise to parameters.
We propose adaptive noise addition in FL which decides the value of injected noise based on features' relative importance.
arXiv Detail & Related papers (2024-01-04T03:01:15Z) - Fed-QSSL: A Framework for Personalized Federated Learning under Bitwidth
and Data Heterogeneity [14.313847382199059]
Federated quantization-based self-supervised learning scheme (Fed-QSSL) designed to address heterogeneity in FL systems.
Fed-QSSL deploys de-quantization, weighted aggregation and re-quantization, ultimately creating models personalized to both data distribution and specific infrastructure of each client's device.
arXiv Detail & Related papers (2023-12-20T19:11:19Z) - Personalized Federated Learning under Mixture of Distributions [98.25444470990107]
We propose a novel approach to Personalized Federated Learning (PFL), which utilizes Gaussian mixture models (GMM) to fit the input data distributions across diverse clients.
FedGMM possesses an additional advantage of adapting to new clients with minimal overhead, and it also enables uncertainty quantification.
Empirical evaluations on synthetic and benchmark datasets demonstrate the superior performance of our method in both PFL classification and novel sample detection.
arXiv Detail & Related papers (2023-05-01T20:04:46Z) - Adaptive Federated Learning via New Entropy Approach [14.595709494370372]
Federated Learning (FL) has emerged as a prominent distributed machine learning framework.
In this paper, we propose an adaptive FEDerated learning algorithm based on ENTropy theory (FedEnt) to alleviate the parameter deviation among heterogeneous clients.
arXiv Detail & Related papers (2023-03-27T07:57:04Z) - Balancing Privacy Protection and Interpretability in Federated Learning [8.759803233734624]
Federated learning (FL) aims to collaboratively train the global model in a distributed manner by sharing the model parameters from local clients to a central server.
Recent studies have illustrated that FL still suffers from information leakage as adversaries try to recover the training data by analyzing shared parameters from local clients.
We propose a simple yet effective adaptive differential privacy (ADP) mechanism that selectively adds noisy perturbations to the gradients of client models in FL.
arXiv Detail & Related papers (2023-02-16T02:58:22Z) - DRFLM: Distributionally Robust Federated Learning with Inter-client
Noise via Local Mixup [58.894901088797376]
federated learning has emerged as a promising approach for training a global model using data from multiple organizations without leaking their raw data.
We propose a general framework to solve the above two challenges simultaneously.
We provide comprehensive theoretical analysis including robustness analysis, convergence analysis, and generalization ability.
arXiv Detail & Related papers (2022-04-16T08:08:29Z) - Acceleration of Federated Learning with Alleviated Forgetting in Local
Training [61.231021417674235]
Federated learning (FL) enables distributed optimization of machine learning models while protecting privacy.
We propose FedReg, an algorithm to accelerate FL with alleviated knowledge forgetting in the local training stage.
Our experiments demonstrate that FedReg not only significantly improves the convergence rate of FL, especially when the neural network architecture is deep.
arXiv Detail & Related papers (2022-03-05T02:31:32Z) - Local Learning Matters: Rethinking Data Heterogeneity in Federated
Learning [61.488646649045215]
Federated learning (FL) is a promising strategy for performing privacy-preserving, distributed learning with a network of clients (i.e., edge devices)
arXiv Detail & Related papers (2021-11-28T19:03:39Z) - Dynamic Federated Learning [57.14673504239551]
Federated learning has emerged as an umbrella term for centralized coordination strategies in multi-agent environments.
We consider a federated learning model where at every iteration, a random subset of available agents perform local updates based on their data.
Under a non-stationary random walk model on the true minimizer for the aggregate optimization problem, we establish that the performance of the architecture is determined by three factors, namely, the data variability at each agent, the model variability across all agents, and a tracking term that is inversely proportional to the learning rate of the algorithm.
arXiv Detail & Related papers (2020-02-20T15:00:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.