論文の概要: SE(3) symmetry lets graph neural networks learn arterial velocity
estimation from small datasets
- arxiv url: http://arxiv.org/abs/2302.08780v2
- Date: Tue, 23 May 2023 13:59:03 GMT
- ステータス: 処理完了
- システム内更新日: 2023-05-25 00:12:49.044410
- Title: SE(3) symmetry lets graph neural networks learn arterial velocity
estimation from small datasets
- Title(参考訳): グラフニューラルネットワークが小さなデータセットから動脈速度推定を学習するSE(3)対称性
- Authors: Julian Suk, Christoph Brune, Jelmer M. Wolterink
- Abstract要約: 冠動脈血行動態は診断,予後,治療計画に有用なバイオマーカーの基礎となる可能性がある。
速度場は典型的には、計算流体力学(CFD)を用いて患者固有の3次元動脈モデルから得られる。
我々は,3次元速度場を推定する効率的なブラックボックスサロゲート法としてグラフニューラルネットワーク(GNN)を提案する。
- 参考スコア(独自算出の注目度): 3.861633648502351
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Hemodynamic velocity fields in coronary arteries could be the basis of
valuable biomarkers for diagnosis, prognosis and treatment planning in
cardiovascular disease. Velocity fields are typically obtained from
patient-specific 3D artery models via computational fluid dynamics (CFD).
However, CFD simulation requires meticulous setup by experts and is
time-intensive, which hinders large-scale acceptance in clinical practice. To
address this, we propose graph neural networks (GNN) as an efficient black-box
surrogate method to estimate 3D velocity fields mapped to the vertices of
tetrahedral meshes of the artery lumen. We train these GNNs on synthetic artery
models and CFD-based ground truth velocity fields. Once the GNN is trained,
velocity estimates in a new and unseen artery can be obtained with 36-fold
speed-up compared to CFD. We demonstrate how to construct an SE(3)-equivariant
GNN that is independent of the spatial orientation of the input mesh and show
how this reduces the necessary amount of training data compared to a baseline
neural network.
- Abstract(参考訳): 冠動脈血行動態は,心臓血管疾患の診断,予後,治療計画に有用なバイオマーカーの基礎となる可能性がある。
速度場は通常、計算流体力学(CFD)を用いて患者固有の3D動脈モデルから得られる。
しかしcfdシミュレーションは専門家による細心の注意が必要であり、時間を要するため、臨床実践の大規模受容を妨げる。
そこで我々は, グラフニューラルネットワーク (GNN) を効率的なブラックボックスサロゲート法として提案し, 動脈腔の四面体メッシュの頂点にマッピングされた3次元速度場を推定する。
我々はこれらのGNNを合成動脈モデルとCFDに基づく地上真理速度場に基づいて訓練する。
GNNのトレーニングが完了すると、CFDと比較して36倍のスピードアップで、新しい未知の動脈の速度推定値が得られる。
本稿では,入力メッシュの空間方向とは無関係なse(3)同値gnnの構築方法を示し,ベースラインニューラルネットワークと比較して,必要なトレーニングデータ量を削減する方法を示す。
関連論文リスト
- Physics-informed graph neural networks for flow field estimation in carotid arteries [2.0437999068326276]
循環動態量は動脈硬化などの循環器疾患にとって貴重なバイオメディカルリスク因子である。
本研究では,機械学習を利用した血行動態場推定のための代理モデルを作成する。
私たちは、基礎となる対称性と物理に関する事前情報を含むグラフニューラルネットワークをトレーニングし、トレーニングに必要なデータ量を制限する。
このことは、物理インフォームドグラフニューラルネットワークを4次元フローMRIデータを用いてトレーニングすることで、見えない頸動脈領域の血流を推定できることを示している。
論文 参考訳(メタデータ) (2024-08-13T13:09:28Z) - Transient Hemodynamics Prediction Using an Efficient Octree-Based Deep
Learning Model [0.0]
複雑な合成血管形状の高分解能(空間および時間)速度場を予測できるアーキテクチャを提案する。
CFDシミュレーションと比較して、速度場は平均絶対誤差0.024m/sで推定できるのに対し、実行時間は高性能クラスタでは数時間からコンシューマグラフィカル処理ユニットでは数秒に短縮される。
論文 参考訳(メタデータ) (2023-02-13T17:56:00Z) - Mesh Neural Networks for SE(3)-Equivariant Hemodynamics Estimation on the Artery Wall [13.113110989699571]
三次元幾何学的動脈モデルによる壁面上のベクトル値量の推定について検討する。
我々は、三角形のメッシュ上で直接動作するエンドツーエンドSE(3)-同変ニューラルネットワークにおいて、グループ同変グラフ畳み込みを用いる。
本手法は, 経時的, ベクトル値のWSSを, 異なる流れ境界条件下で正確に予測できるほど強力であることを示す。
論文 参考訳(メタデータ) (2022-12-09T18:16:06Z) - Machine-Learning Identification of Hemodynamics in Coronary Arteries in
the Presence of Stenosis [0.0]
人工ニューラルネットワーク(ANN)モデルは、動脈ネットワーク内の圧力と速度を予測するために合成データを用いて訓練される。
モデルの有効性を3つの実測値を用いて検証した。
論文 参考訳(メタデータ) (2021-11-02T23:51:06Z) - Mesh convolutional neural networks for wall shear stress estimation in
3D artery models [7.7393800633675465]
CFDと同じ有限要素表面メッシュ上で直接動作するメッシュ畳み込みニューラルネットワークを提案する。
このメッシュ上での3次元壁せん断応力ベクトルを正確に予測できることが,我々のフレキシブルディープラーニングモデルにより示されている。
論文 参考訳(メタデータ) (2021-09-10T11:32:05Z) - Simultaneous boundary shape estimation and velocity field de-noising in
Magnetic Resonance Velocimetry using Physics-informed Neural Networks [70.7321040534471]
MRV(MR resonance velocimetry)は、流体の速度場を測定するために医療や工学で広く用いられている非侵襲的な技術である。
これまでの研究では、境界(例えば血管)の形状が先駆体として知られていた。
我々は、ノイズの多いMRVデータのみを用いて、最も可能性の高い境界形状と減音速度場を推定する物理インフォームニューラルネットワークを提案する。
論文 参考訳(メタデータ) (2021-07-16T12:56:09Z) - Deep Implicit Statistical Shape Models for 3D Medical Image Delineation [47.78425002879612]
解剖学的構造の3次元デライン化は、医用画像解析の基本的な目標である。
ディープラーニング以前は、解剖学的制約を課し高品質の表面を作り出す統計的形状モデルはコア技術だった。
我々は,CNNの表現力とSSMの頑健さを合体させるデライン化の新しい手法であるディープ暗黙的統計的形状モデル(DISSMs)を提案する。
論文 参考訳(メタデータ) (2021-04-07T01:15:06Z) - Learning Hybrid Representations for Automatic 3D Vessel Centerline
Extraction [57.74609918453932]
3次元医用画像からの血管の自動抽出は血管疾患の診断に不可欠である。
既存の方法では、3次元画像からそのような細い管状構造を分割する際に、抽出された容器の不連続に悩まされることがある。
抽出された船舶の連続性を維持するためには、地球的幾何学を考慮に入れる必要があると論じる。
この課題を解決するためのハイブリッド表現学習手法を提案します。
論文 参考訳(メタデータ) (2020-12-14T05:22:49Z) - Learning Tubule-Sensitive CNNs for Pulmonary Airway and Artery-Vein
Segmentation in CT [45.93021999366973]
肺気道,動脈,静脈の分節に対する畳み込みニューラルネットワーク(CNN)の訓練は困難である。
コントラスト非造影CTにおいて,CNNによる正確な気道および動脈静脈分画法を提案する。
細気管支、動脈、静脈に対して優れた感受性を有する。
論文 参考訳(メタデータ) (2020-12-10T15:56:08Z) - Probabilistic 3D surface reconstruction from sparse MRI information [58.14653650521129]
スパース2次元MR画像データとアレータティック不確実性予測から3次元表面再構成を同時に行うための新しい確率論的深層学習手法を提案する。
本手法は,3つの準直交MR画像スライスから,限られたトレーニングセットから大きな表面メッシュを再構成することができる。
論文 参考訳(メタデータ) (2020-10-05T14:18:52Z) - 4D Spatio-Temporal Convolutional Networks for Object Position Estimation
in OCT Volumes [69.62333053044712]
3次元畳み込みニューラルネットワーク(CNN)は、単一のOCT画像を用いたマーカーオブジェクトのポーズ推定に有望な性能を示した。
我々は3次元CNNを4次元時間CNNに拡張し、マーカーオブジェクト追跡のための追加の時間情報の影響を評価する。
論文 参考訳(メタデータ) (2020-07-02T12:02:20Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。