論文の概要: Physics-informed graph neural networks for flow field estimation in carotid arteries
- arxiv url: http://arxiv.org/abs/2408.07110v1
- Date: Tue, 13 Aug 2024 13:09:28 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-15 15:07:25.864933
- Title: Physics-informed graph neural networks for flow field estimation in carotid arteries
- Title(参考訳): 頸動脈の流れ場推定のための物理インフォームドグラフニューラルネットワーク
- Authors: Julian Suk, Dieuwertje Alblas, Barbara A. Hutten, Albert Wiegman, Christoph Brune, Pim van Ooij, Jelmer M. Wolterink,
- Abstract要約: 循環動態量は動脈硬化などの循環器疾患にとって貴重なバイオメディカルリスク因子である。
本研究では,機械学習を利用した血行動態場推定のための代理モデルを作成する。
私たちは、基礎となる対称性と物理に関する事前情報を含むグラフニューラルネットワークをトレーニングし、トレーニングに必要なデータ量を制限する。
このことは、物理インフォームドグラフニューラルネットワークを4次元フローMRIデータを用いてトレーニングすることで、見えない頸動脈領域の血流を推定できることを示している。
- 参考スコア(独自算出の注目度): 2.0437999068326276
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Hemodynamic quantities are valuable biomedical risk factors for cardiovascular pathology such as atherosclerosis. Non-invasive, in-vivo measurement of these quantities can only be performed using a select number of modalities that are not widely available, such as 4D flow magnetic resonance imaging (MRI). In this work, we create a surrogate model for hemodynamic flow field estimation, powered by machine learning. We train graph neural networks that include priors about the underlying symmetries and physics, limiting the amount of data required for training. This allows us to train the model using moderately-sized, in-vivo 4D flow MRI datasets, instead of large in-silico datasets obtained by computational fluid dynamics (CFD), as is the current standard. We create an efficient, equivariant neural network by combining the popular PointNet++ architecture with group-steerable layers. To incorporate the physics-informed priors, we derive an efficient discretisation scheme for the involved differential operators. We perform extensive experiments in carotid arteries and show that our model can accurately estimate low-noise hemodynamic flow fields in the carotid artery. Moreover, we show how the learned relation between geometry and hemodynamic quantities transfers to 3D vascular models obtained using a different imaging modality than the training data. This shows that physics-informed graph neural networks can be trained using 4D flow MRI data to estimate blood flow in unseen carotid artery geometries.
- Abstract(参考訳): 循環動態量は動脈硬化などの循環器疾患にとって貴重なバイオメディカルリスク因子である。
非侵襲的な生体内測定は、MRI(4D Flow magnetic resonance imaging)など、広くは利用できないいくつかのモダリティを用いてのみ行うことができる。
本研究では,機械学習を利用した血行動態場推定のための代理モデルを作成する。
私たちは、基礎となる対称性と物理に関する事前情報を含むグラフニューラルネットワークをトレーニングし、トレーニングに必要なデータ量を制限する。
これにより、計算流体力学(CFD)によって得られた大きなシリコン内データセットの代わりに、適度の大きさの4次元フローMRIデータセットを使用してモデルをトレーニングすることができる。
我々は、人気のあるPointNet++アーキテクチャとグループステアブルレイヤを組み合わせることで、効率的で同変のニューラルネットワークを作成する。
物理インフォームドプリエントを組み込むため、関連する微分作用素に対する効率的な離散化スキームを導出する。
頸動脈において広範な実験を行い,頸動脈内の低圧血行動態場を正確に推定できることが示唆された。
さらに, トレーニングデータと異なる画像モダリティを用いて得られた3次元血管モデルに対して, 幾何量と血行量との学習的関係がどう伝達されるかを示す。
このことは、物理インフォームドグラフニューラルネットワークを4次元フローMRIデータを用いてトレーニングすることで、見えない頸動脈領域の血流を推定できることを示している。
関連論文リスト
- Trajectory Flow Matching with Applications to Clinical Time Series Modeling [77.58277281319253]
Trajectory Flow Matching (TFM) は、シミュレーションのない方法でニューラルSDEを訓練し、ダイナミックスを通してバックプロパゲーションをバイパスする。
絶対的性能と不確実性予測の観点から,3つの臨床時系列データセットの性能向上を実証した。
論文 参考訳(メタデータ) (2024-10-28T15:54:50Z) - Deep vectorised operators for pulsatile hemodynamics estimation in coronary arteries from a steady-state prior [2.3971720731010766]
本稿では,拍動血行動態を推定するために,機械学習を利用した時間効率な代理モデルを提案する。
本モデルでは, 震源領域の再サンプリングに依存せず, 脈動速度と圧力の正確な推定値が得られた。
論文 参考訳(メタデータ) (2024-10-15T12:24:50Z) - Interpretable Spatio-Temporal Embedding for Brain Structural-Effective Network with Ordinary Differential Equation [56.34634121544929]
本研究では,まず動的因果モデルを用いて脳効果ネットワークを構築する。
次に、STE-ODE(Spatio-Temporal Embedding ODE)と呼ばれる解釈可能なグラフ学習フレームワークを導入する。
このフレームワークは、構造的および効果的なネットワーク間の動的相互作用を捉えることを目的とした、特異的に設計されたノード埋め込み層を含んでいる。
論文 参考訳(メタデータ) (2024-05-21T20:37:07Z) - Learning Reduced-Order Models for Cardiovascular Simulations with Graph
Neural Networks [1.2643625859899612]
三次元血行シミュレーションデータに基づいて学習したグラフニューラルネットワークを用いて,血流動態をシミュレートする1次元還元次モデルを構築した。
提案手法は,物理に基づく一次元モデルよりも優れた性能を示しながら,推論時の高効率性を保っている。
論文 参考訳(メタデータ) (2023-03-13T17:32:46Z) - SE(3) symmetry lets graph neural networks learn arterial velocity
estimation from small datasets [3.861633648502351]
冠動脈血行動態は診断,予後,治療計画に有用なバイオマーカーの基礎となる可能性がある。
速度場は典型的には、計算流体力学(CFD)を用いて患者固有の3次元動脈モデルから得られる。
我々は,3次元速度場を推定する効率的なブラックボックスサロゲート法としてグラフニューラルネットワーク(GNN)を提案する。
論文 参考訳(メタデータ) (2023-02-17T09:42:38Z) - Mesh Neural Networks for SE(3)-Equivariant Hemodynamics Estimation on the Artery Wall [13.113110989699571]
三次元幾何学的動脈モデルによる壁面上のベクトル値量の推定について検討する。
我々は、三角形のメッシュ上で直接動作するエンドツーエンドSE(3)-同変ニューラルネットワークにおいて、グループ同変グラフ畳み込みを用いる。
本手法は, 経時的, ベクトル値のWSSを, 異なる流れ境界条件下で正確に予測できるほど強力であることを示す。
論文 参考訳(メタデータ) (2022-12-09T18:16:06Z) - DynDepNet: Learning Time-Varying Dependency Structures from fMRI Data
via Dynamic Graph Structure Learning [58.94034282469377]
下流予測タスクによって誘導されるfMRIデータの最適時間変化依存性構造を学習する新しい手法であるDynDepNetを提案する。
実世界のfMRIデータセットの実験は、性別分類のタスクにおいて、DynDepNetが最先端の結果を達成することを実証している。
論文 参考訳(メタデータ) (2022-09-27T16:32:11Z) - EINNs: Epidemiologically-Informed Neural Networks [75.34199997857341]
本稿では,疫病予測のための新しい物理インフォームドニューラルネットワークEINNを紹介する。
メカニスティックモデルによって提供される理論的柔軟性と、AIモデルによって提供されるデータ駆動表現性の両方を活用する方法について検討する。
論文 参考訳(メタデータ) (2022-02-21T18:59:03Z) - Mixed Effects Neural ODE: A Variational Approximation for Analyzing the
Dynamics of Panel Data [50.23363975709122]
パネルデータ解析に(固定・ランダムな)混合効果を取り入れたME-NODEという確率モデルを提案する。
我々は、Wong-Zakai定理によって提供されるSDEの滑らかな近似を用いて、我々のモデルを導出できることを示す。
次に、ME-NODEのためのエビデンスに基づく下界を導出し、(効率的な)トレーニングアルゴリズムを開発する。
論文 参考訳(メタデータ) (2022-02-18T22:41:51Z) - Machine-Learning Identification of Hemodynamics in Coronary Arteries in
the Presence of Stenosis [0.0]
人工ニューラルネットワーク(ANN)モデルは、動脈ネットワーク内の圧力と速度を予測するために合成データを用いて訓練される。
モデルの有効性を3つの実測値を用いて検証した。
論文 参考訳(メタデータ) (2021-11-02T23:51:06Z) - Simultaneous boundary shape estimation and velocity field de-noising in
Magnetic Resonance Velocimetry using Physics-informed Neural Networks [70.7321040534471]
MRV(MR resonance velocimetry)は、流体の速度場を測定するために医療や工学で広く用いられている非侵襲的な技術である。
これまでの研究では、境界(例えば血管)の形状が先駆体として知られていた。
我々は、ノイズの多いMRVデータのみを用いて、最も可能性の高い境界形状と減音速度場を推定する物理インフォームニューラルネットワークを提案する。
論文 参考訳(メタデータ) (2021-07-16T12:56:09Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。