論文の概要: Highly connected dynamic artificial neural networks
- arxiv url: http://arxiv.org/abs/2302.08928v1
- Date: Fri, 17 Feb 2023 15:05:29 GMT
- ステータス: 処理完了
- システム内更新日: 2023-02-20 14:25:40.929816
- Title: Highly connected dynamic artificial neural networks
- Title(参考訳): 高結合型動的人工ニューラルネットワーク
- Authors: Clint van Alten
- Abstract要約: ニューラルネットワークを実装するためのオブジェクト指向アプローチを紹介する。
ネットワークは、ネットワークのどの層にもノード間のエッジが認められるという点で、高度に接続されている。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: An object-oriented approach to implementing artificial neural networks is
introduced in this article. The networks obtained in this way are highly
connected in that they admit edges between nodes in any layers of the network,
and dynamic, in that the insertion, or deletion, of nodes, edges or layers of
nodes can be effected in a straightforward way. In addition, the activation
functions of nodes need not be uniform within layers, and can also be changed
within individual nodes. Methods for implementing the feedforward step and the
backpropagation technique in such networks are presented here. Methods for
creating networks, for implementing the various dynamic properties and for
saving and recreating networks are also described.
- Abstract(参考訳): 本稿では、ニューラルネットワークを実装するためのオブジェクト指向のアプローチを紹介する。
この方法で得られたネットワークは、ネットワークの任意のレイヤ内のノード間のエッジを許可すると同時に、ノード、エッジ、あるいはノードのレイヤの挿入または削除を、簡単に行うことができる動的に、高度に接続されている。
さらに、ノードの活性化関数はレイヤ内で一様である必要はなく、個々のノード内でも変更できる。
このようなネットワークにおけるフィードフォワードステップとバックプロパゲーション手法の実装方法を紹介する。
ネットワークの作成方法、様々な動的特性の実装方法、ネットワークの保存・再生方法についても述べる。
関連論文リスト
- Graph Neural Networks for Learning Equivariant Representations of Neural Networks [55.04145324152541]
本稿では,ニューラルネットワークをパラメータの計算グラフとして表現することを提案する。
我々のアプローチは、ニューラルネットワークグラフを多種多様なアーキテクチャでエンコードする単一モデルを可能にする。
本稿では,暗黙的ニューラル表現の分類や編集など,幅広いタスクにおける本手法の有効性を示す。
論文 参考訳(メタデータ) (2024-03-18T18:01:01Z) - Conditional computation in neural networks: principles and research trends [48.14569369912931]
本稿では,ニューラルネットワークの設計にテクトコンディショナリ計算を適用するという,新たな領域の原理とアイデアを要約する。
特に、入力に条件付きで計算グラフの一部を動的に活性化または非活性化するニューラルネットワークに焦点を当てる。
論文 参考訳(メタデータ) (2024-03-12T11:56:38Z) - Degree-based stratification of nodes in Graph Neural Networks [66.17149106033126]
グラフニューラルネットワーク(GNN)アーキテクチャを変更して,各グループのノードに対して,重み行列を個別に学習する。
このシンプルな実装変更により、データセットとGNNメソッドのパフォーマンスが改善されているようだ。
論文 参考訳(メタデータ) (2023-12-16T14:09:23Z) - Collaborative Graph Neural Networks for Attributed Network Embedding [63.39495932900291]
グラフニューラルネットワーク(GNN)は、属性付きネットワーク埋め込みにおいて顕著な性能を示している。
本稿では,ネットワーク埋め込みに適したGNNアーキテクチャであるCulaborative graph Neural Networks-CONNを提案する。
論文 参考訳(メタデータ) (2023-07-22T04:52:27Z) - Associative Learning for Network Embedding [20.873120242498292]
新たな視点からネットワーク埋め込み手法を提案する。
ネットワークは各ノードの内容とそのノードの隣人との関係を学習する。
提案手法は,ノード分類やリンク予測などの下流タスクに対して評価を行う。
論文 参考訳(メタデータ) (2022-08-30T16:35:45Z) - DynACPD Embedding Algorithm for Prediction Tasks in Dynamic Networks [6.5361928329696335]
本稿では,動的ネットワークのテンソル表現に対する高次テンソル分解に基づく動的ネットワークに対する新しい埋め込み手法を提案する。
リンク予測タスクにおけるアルゴリズムの性能を,現在のベースライン手法の配列と比較することにより,提案手法のパワーと効率を実証する。
論文 参考訳(メタデータ) (2021-03-12T04:36:42Z) - Artificial Neural Networks generated by Low Discrepancy Sequences [59.51653996175648]
我々は、高密度ネットワークグラフ上のランダムウォーキングとして、人工ニューラルネットワークを生成する。
このようなネットワークはスクラッチからスパースを訓練することができ、高密度ネットワークをトレーニングし、その後圧縮する高価な手順を避けることができる。
我々は,低差分シーケンスで生成された人工ニューラルネットワークが,より低い計算複雑性で,密度の高いニューラルネットワークの到達範囲内で精度を達成できることを実証した。
論文 参考訳(メタデータ) (2021-03-05T08:45:43Z) - Lattice Fusion Networks for Image Denoising [4.010371060637209]
本稿では,畳み込みニューラルネットワークにおける特徴融合手法を提案する。
これらの手法のいくつかと提案したネットワークは、DAG(Directed Acyclic Graph)ネットワークの一種と見なすことができる。
提案したネットワークは、学習可能なパラメータをはるかに少なくして、より良い結果を得ることができる。
論文 参考訳(メタデータ) (2020-11-28T18:57:54Z) - Dynamic Graph: Learning Instance-aware Connectivity for Neural Networks [78.65792427542672]
動的グラフネットワーク(DG-Net)は完全な有向非巡回グラフであり、ノードは畳み込みブロックを表し、エッジは接続経路を表す。
ネットワークの同じパスを使用する代わりに、DG-Netは各ノードの機能を動的に集約する。
論文 参考訳(メタデータ) (2020-10-02T16:50:26Z) - Modeling Dynamic Heterogeneous Network for Link Prediction using
Hierarchical Attention with Temporal RNN [16.362525151483084]
我々はDyHATRと呼ばれる新しい動的ヘテロジニアスネットワーク埋め込み法を提案する。
階層的な注意を使って異質な情報を学習し、進化パターンを捉えるために時間的注意を伴う繰り返しニューラルネットワークを組み込む。
リンク予測のための4つの実世界のデータセットに対して,本手法をベンチマークした。
論文 参考訳(メタデータ) (2020-04-01T17:16:47Z) - Adversarial Deep Network Embedding for Cross-network Node Classification [27.777464531860325]
クロスネットワークノード分類は、ソースネットワークからの豊富なラベル付きノードを活用し、ターゲットネットワーク内のラベルなしノードの分類を支援する。
本稿では, 対向ドメイン適応とディープネットワーク埋め込みを統合するための, 対向クロスネットワークディープネットワーク埋め込みモデルを提案する。
提案したACDNEモデルは,ネットワーク間ノード分類における最先端性能を実現する。
論文 参考訳(メタデータ) (2020-02-18T04:30:43Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。