論文の概要: Rejecting Cognitivism: Computational Phenomenology for Deep Learning
- arxiv url: http://arxiv.org/abs/2302.09071v1
- Date: Thu, 16 Feb 2023 20:05:06 GMT
- ステータス: 処理完了
- システム内更新日: 2023-02-21 20:36:38.242425
- Title: Rejecting Cognitivism: Computational Phenomenology for Deep Learning
- Title(参考訳): 認知主義を拒絶する:深層学習のための計算現象論
- Authors: Pierre Beckmann, Guillaume K\"ostner, In\^es Hip\'olito
- Abstract要約: 本稿では,新しい手法である計算現象学に基づくディープラーニングのための非表現主義的フレームワークを提案する。
我々は、人工知能が外部エンティティの表現を符号化する深層学習の現代の認知論的解釈を拒絶する。
- 参考スコア(独自算出の注目度): 5.070542698701158
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We propose a non-representationalist framework for deep learning relying on a
novel method: computational phenomenology, a dialogue between the first-person
perspective (relying on phenomenology) and the mechanisms of computational
models. We thereby reject the modern cognitivist interpretation of deep
learning, according to which artificial neural networks encode representations
of external entities. This interpretation mainly relies on
neuro-representationalism, a position that combines a strong ontological
commitment towards scientific theoretical entities and the idea that the brain
operates on symbolic representations of these entities. We proceed as follows:
after offering a review of cognitivism and neuro-representationalism in the
field of deep learning, we first elaborate a phenomenological critique of these
positions; we then sketch out computational phenomenology and distinguish it
from existing alternatives; finally we apply this new method to deep learning
models trained on specific tasks, in order to formulate a conceptual framework
of deep-learning, that allows one to think of artificial neural networks'
mechanisms in terms of lived experience.
- Abstract(参考訳): 本稿では,新しい手法である計算現象論,(現象論に基づく)一人称視点と計算モデルのメカニズムとの対話に基づく,深層学習のための非表現主義的枠組みを提案する。
これにより、ニューラルネットワークが外部実体の表現を符号化する現代認知主義的深層学習の解釈を拒絶する。
この解釈は主に、科学的実体に対する強い存在論的コミットメントと、脳がこれらの実体の象徴的表現に作用するという考えを組み合わせた、神経表現主義に依存している。
We proceed as follows: after offering a review of cognitivism and neuro-representationalism in the field of deep learning, we first elaborate a phenomenological critique of these positions; we then sketch out computational phenomenology and distinguish it from existing alternatives; finally we apply this new method to deep learning models trained on specific tasks, in order to formulate a conceptual framework of deep-learning, that allows one to think of artificial neural networks' mechanisms in terms of lived experience.
関連論文リスト
- Neuropsychology and Explainability of AI: A Distributional Approach to the Relationship Between Activation Similarity of Neural Categories in Synthetic Cognition [0.11235145048383502]
本稿では,人間の認知トークンの概念を応用した,人工ニューラルネットワークの説明可能性へのアプローチを提案する。
ニューロンが生成するカテゴリセグメントは、実際には入力ベクトル空間内のカテゴリサブ次元の重ね合わせの結果であることを示す。
論文 参考訳(メタデータ) (2024-10-23T05:27:09Z) - Neuropsychology of AI: Relationship Between Activation Proximity and Categorical Proximity Within Neural Categories of Synthetic Cognition [0.11235145048383502]
本研究は,認知心理学における新たな研究対象として,合成ニューラルコグニションに焦点を当てた。
目標は、言語モデルのニューラルネットワークをより説明しやすくすることだ。
このアプローチは、認知心理学から人工神経認知の解釈的構築への概念の変換を含む。
論文 参考訳(メタデータ) (2024-10-08T12:34:13Z) - Contrastive Learning in Memristor-based Neuromorphic Systems [55.11642177631929]
スパイクニューラルネットワークは、現代のバックプロパゲーションによって訓練されたディープネットワークに直面する重要な制約の多くを横取りする、ニューロンベースのモデルの重要なファミリーとなっている。
本研究では,前向き・後向き学習のニューロモルフィック形式であるコントラッシブ・シグナル依存型塑性(CSDP)の概念実証を設計し,検討する。
論文 参考訳(メタデータ) (2024-09-17T04:48:45Z) - Brain-Inspired Machine Intelligence: A Survey of
Neurobiologically-Plausible Credit Assignment [65.268245109828]
本稿では,神経生物学にインスパイアされた,あるいは動機付けられた人工ニューラルネットワークにおける信用割当を行うアルゴリズムについて検討する。
我々は、脳にインスパイアされた学習スキームを6つの一般的なファミリーにまとめ、これらを誤りのバックプロパゲーションの文脈で検討する。
本研究の成果は,神経ミメティックシステムとその構成的学習プロセスの今後の発展を促進することを目的としている。
論文 参考訳(メタデータ) (2023-12-01T05:20:57Z) - From Neural Activations to Concepts: A Survey on Explaining Concepts in Neural Networks [15.837316393474403]
概念は学習と推論の自然な結びつきとして機能する。
知識はニューラルネットワークから抽出できるだけでなく、概念知識をニューラルネットワークアーキテクチャに挿入することもできる。
論文 参考訳(メタデータ) (2023-10-18T11:08:02Z) - A Neuro-mimetic Realization of the Common Model of Cognition via Hebbian
Learning and Free Energy Minimization [55.11642177631929]
大規模なニューラル生成モデルは、意味的に豊富なテキストのパスを合成したり、複雑な画像を生成することができる。
我々はコモン・モデル・オブ・コグニティブ・ニューラル・ジェネレーティブ・システムについて論じる。
論文 参考訳(メタデータ) (2023-10-14T23:28:48Z) - Contrastive-Signal-Dependent Plasticity: Self-Supervised Learning in Spiking Neural Circuits [61.94533459151743]
この研究は、スパイキングネットワークのシナプスを調整するための神経生物学的に動機づけられたスキームを設計することの課題に対処する。
我々の実験シミュレーションは、繰り返しスパイクネットワークを訓練する際、他の生物学的に証明可能なアプローチに対して一貫した優位性を示す。
論文 参考訳(メタデータ) (2023-03-30T02:40:28Z) - Mapping Knowledge Representations to Concepts: A Review and New
Perspectives [0.6875312133832078]
本論は、内部表現と人間の理解可能な概念を関連付けることを目的とした研究に焦点をあてる。
この分類学と因果関係の理論は、ニューラルネットワークの説明から期待できるもの、期待できないものを理解するのに有用である。
この分析は、モデル説明可能性の目標に関するレビューされた文献の曖昧さも明らかにしている。
論文 参考訳(メタデータ) (2022-12-31T12:56:12Z) - Interpretability of Neural Network With Physiological Mechanisms [5.1971653175509145]
ディープラーニングは、レグレッションと分類タスクの様々な領域で異常な精度を達成した強力な最先端技術として、引き続き機能している。
ニューラルネットワークモデルを最初に提案する目的は、数学的表現アプローチを使用して複雑な人間の脳を理解することを改善することである。
近年のディープラーニング技術は、ブラックボックス近似器として扱われることによって、機能的プロセスの解釈を失う傾向にある。
論文 参考訳(メタデータ) (2022-03-24T21:40:04Z) - Developing Constrained Neural Units Over Time [81.19349325749037]
本稿では,既存のアプローチと異なるニューラルネットワークの定義方法に焦点をあてる。
ニューラルネットワークの構造は、データとの相互作用にも拡張される制約の特別なクラスによって定義される。
提案した理論は時間領域にキャストされ, データを順序づけられた方法でネットワークに提示する。
論文 参考訳(メタデータ) (2020-09-01T09:07:25Z) - Neuro-symbolic Architectures for Context Understanding [59.899606495602406]
本稿では,データ駆動型アプローチと知識駆動型アプローチの強みを組み合わせたフレームワークとして,ハイブリッドAI手法を提案する。
具体的には、知識ベースを用いて深層ニューラルネットワークの学習過程を導く方法として、ニューロシンボリズムの概念を継承する。
論文 参考訳(メタデータ) (2020-03-09T15:04:07Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。