論文の概要: Platform-Independent and Curriculum-Oriented Intelligent Assistant for
Higher Education
- arxiv url: http://arxiv.org/abs/2302.09294v1
- Date: Wed, 15 Feb 2023 19:02:01 GMT
- ステータス: 処理完了
- システム内更新日: 2023-02-26 14:44:04.641645
- Title: Platform-Independent and Curriculum-Oriented Intelligent Assistant for
Higher Education
- Title(参考訳): 高等教育のためのプラットフォーム非依存・カリキュラム指向知能アシスタント
- Authors: Ramteja Sajja, Yusuf Sermet, David Cwiertny, Ibrahim Demir
- Abstract要約: 我々は、パワー言語モデル(GPT-3)に基づくAIを活用したインテリジェントな教育支援フレームワークを開発した。
仮想インテリジェント・インテリジェンス・アシスタント(TA)システムは、カリキュラム、物流、コースポリシーに関するコース固有の質問に答えることのできる音声対応のヘルパーとして機能する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Miscommunication and communication challenges between instructors and
students represents one of the primary barriers to post-secondary learning.
Students often avoid or miss opportunities to ask questions during office hours
due to insecurities or scheduling conflicts. Moreover, students need to work at
their own pace to have the freedom and time for the self-contemplation needed
to build conceptual understanding and develop creative thinking skills. To
eliminate barriers to student engagement, academic institutions need to
redefine their fundamental approach to education by proposing flexible
educational pathways that recognize continuous learning. To this end, we
developed an AI-augmented intelligent educational assistance framework based on
a power language model (i.e., GPT-3) that automatically generates
course-specific intelligent assistants regardless of discipline or academic
level. The virtual intelligent teaching assistant (TA) system will serve as a
voice-enabled helper capable of answering course-specific questions concerning
curriculum, logistics and course policies. It is envisioned to improve access
to course-related information for the students and reduce logistical workload
for the instructors and TAs. Its GPT-3-based knowledge discovery component as
well as the generalized system architecture is presented accompanied by a
methodical evaluation of the system accuracy and performance.
- Abstract(参考訳): インストラクターと学生間のコミュニケーションとコミュニケーションの課題は、後2次学習における主要な障壁の1つである。
学生はしばしば、不確実性や紛争のスケジューリングのために、勤務時間中に質問する機会を避けたり見逃したりする。
さらに、学生は、概念的理解の構築と創造的思考スキルの発達に必要な自己観念の自由と時間を得るために、自身のペースで働く必要がある。
学生のエンゲージメントに対する障壁を排除するため、学術機関は継続的学習を認識する柔軟な教育経路を提案し、教育に対する基本的なアプローチを再定義する必要がある。
そこで我々は,学習水準や学習水準に関わらず,コース固有の知的アシスタントを自動的に生成するパワー言語モデル(GPT-3)に基づく,AIを活用したインテリジェントな教育支援フレームワークを開発した。
仮想インテリジェント・インテリジェンス・アシスタント(TA)システムは、カリキュラム、物流、コースポリシーに関するコース固有の質問に答えることができる音声対応のヘルパーとして機能する。
学生のコース関連情報へのアクセスを改善し,インストラクターやtasの作業量を削減することが期待されている。
GPT-3に基づく知識発見コンポーネントと一般化されたシステムアーキテクチャは,システム精度と性能の方法論的評価を伴う。
関連論文リスト
- Education in the Era of Neurosymbolic AI [0.6468510459310326]
我々は,ハイブリッドNAIアーキテクチャの重要な構成要素として,教育エージェントの独特な余裕を生かしたシステムを提案する。
我々は,NAI時代の教育によって,学習がよりアクセスしやすく,公平で,現実世界のスキルに適合するものになると結論づける。
論文 参考訳(メタデータ) (2024-11-16T19:18:39Z) - Could ChatGPT get an Engineering Degree? Evaluating Higher Education Vulnerability to AI Assistants [175.9723801486487]
我々は,2つのAIアシスタントであるGPT-3.5とGPT-4が適切な回答を得られるかどうかを評価する。
GPT-4は65.8%の質問を正解し、85.1%の質問に対して少なくとも1つの手順で正しい答えを出すことができる。
この結果から,AIの進歩を踏まえて,高等教育におけるプログラムレベルの評価設計の見直しが求められた。
論文 参考訳(メタデータ) (2024-08-07T12:11:49Z) - CourseAssist: Pedagogically Appropriate AI Tutor for Computer Science Education [1.052788652996288]
このポスターでは、コンピュータサイエンス教育用に作られた新しいLLMベースのチューターシステムであるCourseAssistを紹介している。
一般的なLLMシステムとは異なり、CourseAssistは検索強化生成、ユーザ意図分類、質問分解を使用して、AI応答を特定のコース材料や学習目標と整合させる。
論文 参考訳(メタデータ) (2024-05-01T20:43:06Z) - Adapting Large Language Models for Education: Foundational Capabilities, Potentials, and Challenges [60.62904929065257]
大規模言語モデル(LLM)は、個々の要求を解釈することでこの問題を解決する可能性を提供する。
本稿では, 数学, 文章, プログラミング, 推論, 知識に基づく質問応答など, 教育能力に関する最近のLLM研究を概観する。
論文 参考訳(メタデータ) (2023-12-27T14:37:32Z) - Understanding Teacher Perspectives and Experiences after Deployment of
AI Literacy Curriculum in Middle-school Classrooms [12.35885897302579]
我々は,MIT RAICAカリキュラムのモジュール実装にともなう7人の教師の経験を考察した。
我々の分析は、AIモジュールが、この分野における教師の知識を拡大したことを示唆している。
私たちの教師は、技術資源をナビゲートする際に、より良い外部支援の必要性を主張しました。
論文 参考訳(メタデータ) (2023-12-08T05:36:16Z) - Towards Goal-oriented Intelligent Tutoring Systems in Online Education [69.06930979754627]
目標指向知能チューニングシステム(GITS)という新しいタスクを提案する。
GITSは,演習や評価のカスタマイズを戦略的に計画することで,学生の指定概念の習得を可能にすることを目的としている。
PAI(Planning-Assessment-Interaction)と呼ばれるグラフに基づく新しい強化学習フレームワークを提案する。
論文 参考訳(メタデータ) (2023-12-03T12:37:16Z) - Artificial Intelligence-Enabled Intelligent Assistant for Personalized
and Adaptive Learning in Higher Education [0.2812395851874055]
本稿では,AIIA(Artificial Intelligence-Enabled Intelligent Assistant)という,高等教育におけるパーソナライズおよび適応学習のための新しいフレームワークを提案する。
AIIAシステムは、高度なAIと自然言語処理(NLP)技術を活用して、対話的で魅力的な学習プラットフォームを構築する。
論文 参考訳(メタデータ) (2023-09-19T19:31:15Z) - Empowering Private Tutoring by Chaining Large Language Models [87.76985829144834]
本研究は,最先端の大規模言語モデル(LLM)を活用した,本格的な知的チューリングシステムの開発を探求する。
このシステムは、相互に接続された3つのコアプロセス(相互作用、反射、反応)に分けられる。
各プロセスは LLM ベースのツールと動的に更新されたメモリモジュールによって実装される。
論文 参考訳(メタデータ) (2023-09-15T02:42:03Z) - UKP-SQuARE: An Interactive Tool for Teaching Question Answering [61.93372227117229]
質問応答の指数的増加(QA)は、あらゆる自然言語処理(NLP)コースにおいて必須のトピックとなっている。
本稿では、QA教育のプラットフォームとしてUKP-SQuAREを紹介する。
学生は様々な視点から様々なQAモデルを実行、比較、分析することができる。
論文 参考訳(メタデータ) (2023-05-31T11:29:04Z) - AGI: Artificial General Intelligence for Education [41.45039606933712]
本稿では,人工知能(AGI)の重要な概念,能力,範囲,将来的な教育の可能性について概説する。
AGIは知的学習システム、教育評価、評価手順を大幅に改善することができる。
この論文は、AGIの能力が人間の感情や社会的相互作用を理解することに拡張されていることを強調している。
論文 参考訳(メタデータ) (2023-04-24T22:31:59Z) - Autonomous Open-Ended Learning of Tasks with Non-Stationary
Interdependencies [64.0476282000118]
固有のモチベーションは、目標間のトレーニング時間を適切に割り当てるタスクに依存しないシグナルを生成することが証明されている。
内在的に動機付けられたオープンエンドラーニングの分野におけるほとんどの研究は、目標が互いに独立しているシナリオに焦点を当てているが、相互依存タスクの自律的な獲得を研究するのはごくわずかである。
特に,タスク間の関係に関する情報をアーキテクチャのより高レベルなレベルで組み込むことの重要性を示す。
そして、自律的に取得したシーケンスを格納する新しい学習層を追加することで、前者を拡張する新しいシステムであるH-GRAILを紹介する。
論文 参考訳(メタデータ) (2022-05-16T10:43:01Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。