論文の概要: Artificial Intelligence-Enabled Intelligent Assistant for Personalized
and Adaptive Learning in Higher Education
- arxiv url: http://arxiv.org/abs/2309.10892v1
- Date: Tue, 19 Sep 2023 19:31:15 GMT
- ステータス: 処理完了
- システム内更新日: 2023-09-21 18:06:02.565890
- Title: Artificial Intelligence-Enabled Intelligent Assistant for Personalized
and Adaptive Learning in Higher Education
- Title(参考訳): 高度教育におけるパーソナライズと適応学習のための人工知能による知的アシスタント
- Authors: Ramteja Sajja, Yusuf Sermet, Muhammed Cikmaz, David Cwiertny, Ibrahim
Demir
- Abstract要約: 本稿では,AIIA(Artificial Intelligence-Enabled Intelligent Assistant)という,高等教育におけるパーソナライズおよび適応学習のための新しいフレームワークを提案する。
AIIAシステムは、高度なAIと自然言語処理(NLP)技術を活用して、対話的で魅力的な学習プラットフォームを構築する。
- 参考スコア(独自算出の注目度): 0.2812395851874055
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper presents a novel framework, Artificial Intelligence-Enabled
Intelligent Assistant (AIIA), for personalized and adaptive learning in higher
education. The AIIA system leverages advanced AI and Natural Language
Processing (NLP) techniques to create an interactive and engaging learning
platform. This platform is engineered to reduce cognitive load on learners by
providing easy access to information, facilitating knowledge assessment, and
delivering personalized learning support tailored to individual needs and
learning styles. The AIIA's capabilities include understanding and responding
to student inquiries, generating quizzes and flashcards, and offering
personalized learning pathways. The research findings have the potential to
significantly impact the design, implementation, and evaluation of AI-enabled
Virtual Teaching Assistants (VTAs) in higher education, informing the
development of innovative educational tools that can enhance student learning
outcomes, engagement, and satisfaction. The paper presents the methodology,
system architecture, intelligent services, and integration with Learning
Management Systems (LMSs) while discussing the challenges, limitations, and
future directions for the development of AI-enabled intelligent assistants in
education.
- Abstract(参考訳): 本稿では,AIIA(Artificial Intelligence-Enabled Intelligent Assistant)という,高等教育におけるパーソナライズおよび適応学習のための新しいフレームワークを提案する。
AIIAシステムは、高度なAIと自然言語処理(NLP)技術を活用して、対話的で魅力的な学習プラットフォームを構築する。
このプラットフォームは、情報へのアクセスを容易にし、知識アセスメントを容易にし、個々のニーズや学習スタイルに合わせてパーソナライズされた学習支援を提供することによって、学習者の認知負荷を軽減するために設計された。
AIIAの能力には、学生の質問に対する理解と応答、クイズとフラッシュカードの生成、パーソナライズされた学習経路の提供が含まれる。
この研究結果は、高等教育におけるAI対応バーチャル指導アシスタント(VTA)の設計、実装、評価に大きな影響を与える可能性があり、学生の学習成果、エンゲージメント、満足度を高める革新的な教育ツールの開発を通知する。
本稿では,教育におけるAIを活用したインテリジェントアシスタント開発における課題,限界,今後の方向性について議論しながら,方法論,システムアーキテクチャ,インテリジェントサービス,LMS(Learning Management Systems)との統合について述べる。
関連論文リスト
- Collaborative Design of AI-Enhanced Learning Activities [0.0]
我々は、プレサービス教師、インサービス教師、EdTechスペシャリストがAIを教育実践に効果的に組み込むことができるような形式的な介入を開発する。
参加者は、AIリテラシーを教育に組み込むさまざまなアクティビティを探求することで、AIの教育と学習のポテンシャルを反映している。
論文 参考訳(メタデータ) (2024-07-09T08:34:08Z) - Enhancing Instructional Quality: Leveraging Computer-Assisted Textual
Analysis to Generate In-Depth Insights from Educational Artifacts [13.617709093240231]
本研究では、人工知能(AI)と機械学習(ML)が教育内容、教師の談話、学生の反応を分析して教育改善を促進する方法について検討する。
私たちは、教師のコーチング、学生のサポート、コンテンツ開発など、AI/ML統合が大きな利点をもたらす重要な領域を特定します。
本稿では,AI/ML技術と教育的目標との整合性の重要性を強調し,その教育的可能性を実現する。
論文 参考訳(メタデータ) (2024-03-06T18:29:18Z) - Toward enriched Cognitive Learning with XAI [44.99833362998488]
本稿では,人工知能(AI)ツールによる認知学習のためのインテリジェントシステム(CL-XAI)を提案する。
CL-XAIの使用は、学習者が問題解決スキルを高めるために問題に取り組むゲームインスパイアされた仮想ユースケースで説明される。
論文 参考訳(メタデータ) (2023-12-19T16:13:47Z) - ActiveAI: Introducing AI Literacy for Middle School Learners with
Goal-based Scenario Learning [0.0]
ActiveAIプロジェクトは、小学校7~9年生のAI教育における重要な課題に対処する。
このアプリには、スライダー、ステッパー、コレクタなど、さまざまな学習者インプットが組み込まれており、理解を深めている。
このプロジェクトは、現在実装段階にあり、アプリ開発にインテリジェントなチューター設計原則を活用している。
論文 参考訳(メタデータ) (2023-08-21T11:43:43Z) - Deep Active Learning for Computer Vision: Past and Future [50.19394935978135]
AIモデルの開発に欠かせない役割にもかかわらず、アクティブラーニングの研究は他の研究の方向性ほど集中的ではない。
データ自動化の課題に対処し、自動化された機械学習システムに対処することによって、アクティブな学習はAI技術の民主化を促進する。
論文 参考訳(メタデータ) (2022-11-27T13:07:14Z) - Personalized Education in the AI Era: What to Expect Next? [76.37000521334585]
パーソナライズ学習の目的は、学習者の強みに合致する効果的な知識獲得トラックをデザインし、目標を達成するために弱みをバイパスすることである。
近年、人工知能(AI)と機械学習(ML)の隆盛は、パーソナライズされた教育を強化するための新しい視点を広げています。
論文 参考訳(メタデータ) (2021-01-19T12:23:32Z) - Artificial Intelligence enabled Smart Learning [0.0]
人工知能(ai、artificial intelligence)は、人工知能を扱うコンピュータ科学の分野である。
それは個々の学生、教師および学術スタッフから集められる膨大な量のデータを分析するのを助けます。
世界銀行教育報告書は、この問題によって生み出された学習ギャップが多くの学生を退学させることを示唆している。
論文 参考訳(メタデータ) (2021-01-08T12:49:33Z) - Empowering Things with Intelligence: A Survey of the Progress,
Challenges, and Opportunities in Artificial Intelligence of Things [98.10037444792444]
AIがIoTをより速く、より賢く、よりグリーンで、より安全にするための力を与える方法を示します。
まず、認識、学習、推論、行動の4つの視点から、IoTのためのAI研究の進歩を示す。
最後に、私たちの世界を深く再形成する可能性が高いAIoTの有望な応用をいくつかまとめる。
論文 参考訳(メタデータ) (2020-11-17T13:14:28Z) - Future Trends for Human-AI Collaboration: A Comprehensive Taxonomy of
AI/AGI Using Multiple Intelligences and Learning Styles [95.58955174499371]
我々は、複数の人間の知性と学習スタイルの様々な側面を説明し、様々なAI問題領域に影響を及ぼす可能性がある。
未来のAIシステムは、人間のユーザと互いにコミュニケーションするだけでなく、知識と知恵を効率的に交換できる。
論文 参考訳(メタデータ) (2020-08-07T21:00:13Z) - Distributed and Democratized Learning: Philosophy and Research
Challenges [80.39805582015133]
民主化学習(Dem-AI)という新しいデザイン哲学を提案する。
ヒトの社会的グループに触発され、提案されたDem-AIシステムの学習エージェントの専門グループは階層構造で自己組織化され、より効率的に学習タスクを遂行する。
本稿では,様々な学際分野に触発された未来のDem-AIシステムを実現するためのガイドラインとして,参照設計を提案する。
論文 参考訳(メタデータ) (2020-03-18T08:45:10Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。