論文の概要: Oriented Object Detection in Optical Remote Sensing Images: A Survey
- arxiv url: http://arxiv.org/abs/2302.10473v1
- Date: Tue, 21 Feb 2023 06:31:53 GMT
- ステータス: 処理完了
- システム内更新日: 2023-02-22 16:04:39.978454
- Title: Oriented Object Detection in Optical Remote Sensing Images: A Survey
- Title(参考訳): 光リモートセンシング画像における指向性物体検出:調査
- Authors: Kun Wang, Zhang Li, Ang Su, Zi Wang
- Abstract要約: オブジェクト指向物体検出は、リモートセンシングにおいて最も基本的で困難なタスクの1つである。
深層学習に基づく手法は、リモートセンシング画像における指向性物体の検出において顕著な性能を達成している。
- 参考スコア(独自算出の注目度): 26.855118712159083
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Oriented object detection is one of the most fundamental and challenging
tasks in remote sensing, aiming at locating the oriented objects of numerous
predefined object categories. Recently, deep learning based methods have
achieved remarkable performance in detecting oriented objects in remote sensing
imagery. However, a thorough review of the literature in remote sensing has not
yet emerged. Therefore, we give a comprehensive survey of recent advances and
cover many aspects of oriented object detection, including problem definition,
commonly used datasets, evaluation protocols, detection frameworks, oriented
object representations, and feature representations. Besides, we analyze and
discuss state-of-the-art methods. We finally discuss future research directions
to put forward some useful research guidance. We believe that this survey shall
be valuable to researchers across academia and industry.
- Abstract(参考訳): 指向オブジェクト検出は、リモートセンシングにおける最も基本的かつ挑戦的なタスクの1つであり、多数の事前定義されたオブジェクトカテゴリの指向オブジェクトを見つけることを目的としている。
近年, リモートセンシング画像における指向性物体の検出において, 深層学習に基づく手法が有意な性能を発揮している。
しかし,リモートセンシングにおける文献の徹底的なレビューは行われていない。
そこで我々は,近年の進歩を包括的に調査し,問題定義,一般的なデータセット,評価プロトコル,検出フレームワーク,オブジェクト指向オブジェクト表現,特徴表現など,オブジェクト指向オブジェクト検出の多くの側面をカバーする。
また,最先端手法の解析と議論を行う。
最後に,今後の研究の方向性を議論し,有用な研究指導を行う。
この調査は、学術と産業の研究者にとって価値があると信じている。
関連論文リスト
- Learning Background Prompts to Discover Implicit Knowledge for Open Vocabulary Object Detection [101.15777242546649]
Open vocabulary Object Detection (OVD) は、ベースと新規の両方のカテゴリからオブジェクトを認識できる最適なオブジェクト検出器を求めることを目的としている。
近年の進歩は、知識蒸留を利用して、事前訓練された大規模視覚言語モデルからオブジェクト検出のタスクに洞察力のある知識を伝達している。
本稿では,暗黙的背景知識を活用するための学習バックグラウンドプロンプトを提案するため,LBPと呼ばれる新しいOVDフレームワークを提案する。
論文 参考訳(メタデータ) (2024-06-01T17:32:26Z) - Deep Learning-Based Object Pose Estimation: A Comprehensive Survey [73.74933379151419]
ディープラーニングに基づくオブジェクトポーズ推定の最近の進歩について論じる。
また、複数の入力データモダリティ、出力ポーズの自由度、オブジェクト特性、下流タスクについても調査した。
論文 参考訳(メタデータ) (2024-05-13T14:44:22Z) - Few-Shot Object Detection: Research Advances and Challenges [15.916463121997843]
Few-shot Object Detection (FSOD)は、少数の学習技術とオブジェクト検出技術を組み合わせて、注釈付きサンプルに制限のある新しいオブジェクトに迅速に適応する。
本稿では,近年のFSOD分野の進歩を概観する包括的調査を行う。
論文 参考訳(メタデータ) (2024-04-07T03:37:29Z) - Remote Sensing Object Detection Meets Deep Learning: A Meta-review of
Challenges and Advances [51.70835702029498]
本稿では,ディープラーニングに基づくRSOD手法の最近の成果を概観する。
RSODの主な課題として,マルチスケールオブジェクト検出,回転オブジェクト検出,弱いオブジェクト検出,小さなオブジェクト検出,限られた監視を伴うオブジェクト検出の5つを挙げる。
また、RSODの分野で広く使用されているベンチマークデータセットと評価指標、およびRSODのアプリケーションシナリオについてもレビューする。
論文 参考訳(メタデータ) (2023-09-13T06:48:32Z) - A Comprehensive Study on Object Detection Techniques in Unconstrained
Environments [0.0]
オブジェクト検出は、画像やビデオ内のオブジェクトを識別し、ローカライズすることを目的とした、コンピュータビジョンにおける重要なタスクである。
近年のディープラーニングと畳み込みニューラルネットワーク(CNN)の進歩により、オブジェクト検出技術の性能が大幅に向上した。
本稿では,制約のない環境下でのオブジェクト検出技術について,様々な課題,データセット,最先端のアプローチを含む包括的研究を行う。
論文 参考訳(メタデータ) (2023-04-11T15:45:03Z) - A Comparative Review of Recent Few-Shot Object Detection Algorithms [0.0]
ラベル付きデータで新しいクラスに適応するために学習するオブジェクトの少ない検出は、命令的で長期にわたる問題である。
近年の研究では、ターゲットドメインを監督せずに追加データセットに暗黙の手がかりを使って、少数のショット検出器が堅牢なタスク概念を洗練させる方法が研究されている。
論文 参考訳(メタデータ) (2021-10-30T07:57:11Z) - Learning Open-World Object Proposals without Learning to Classify [110.30191531975804]
本研究では,各領域の位置と形状がどの接地トラストオブジェクトとどのように重なり合うかによって,各領域の目的性を純粋に推定する,分類不要なオブジェクトローカライゼーションネットワークを提案する。
この単純な戦略は一般化可能な対象性を学び、クロスカテゴリの一般化に関する既存の提案より優れている。
論文 参考訳(メタデータ) (2021-08-15T14:36:02Z) - Deep Learning on Monocular Object Pose Detection and Tracking: A
Comprehensive Overview [8.442460766094674]
オブジェクトのポーズ検出と追跡は、自律運転、ロボット工学、拡張現実など、多くの分野で広く応用されているため、注目を集めている。
ディープラーニングは、他のものよりも優れたパフォーマンスを示した最も有望なものです。
本稿では,ディープラーニング技術経路に属するオブジェクトのポーズ検出と追跡の最近の進歩を概観する。
論文 参考訳(メタデータ) (2021-05-29T12:59:29Z) - Unsupervised Domain Adaption of Object Detectors: A Survey [87.08473838767235]
近年のディープラーニングの進歩は、様々なコンピュータビジョンアプリケーションのための正確で効率的なモデルの開発につながっている。
高度に正確なモデルを学ぶには、大量の注釈付きイメージを持つデータセットの可用性に依存する。
このため、ラベルスカースデータセットに視覚的に異なる画像がある場合、モデルの性能は大幅に低下する。
論文 参考訳(メタデータ) (2021-05-27T23:34:06Z) - Slender Object Detection: Diagnoses and Improvements [74.40792217534]
本稿では,超高アスペクト比,すなわちtextbfslender オブジェクトの特定タイプの検出について検討する。
古典的物体検出法では、細い物体に対してのみ評価される場合、COCO上の18.9%のmAPの劇的な低下が観察される。
論文 参考訳(メタデータ) (2020-11-17T09:39:42Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。