Importance of methodological choices in data manipulation for validating
epileptic seizure detection models
- URL: http://arxiv.org/abs/2302.10672v1
- Date: Tue, 21 Feb 2023 13:44:13 GMT
- Title: Importance of methodological choices in data manipulation for validating
epileptic seizure detection models
- Authors: Una Pale, Tomas Teijeiro, David Atienza
- Abstract summary: Epilepsy is a chronic neurological disorder that affects a significant portion of the human population and imposes serious risks in the daily life of patients.
Despite advances in machine learning and IoT, small, nonstigmatizing wearable devices for continuous monitoring and detection in outpatient environments are not yet available.
Part of the reason is the complexity of epilepsy itself, including highly imbalanced data, multimodal nature, and very subject-specific signatures.
This article identifies a wide range of methodological decisions that must be made and reported when training and evaluating the performance of epilepsy detection systems.
- Score: 4.538319875483978
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Epilepsy is a chronic neurological disorder that affects a significant
portion of the human population and imposes serious risks in the daily life of
patients. Despite advances in machine learning and IoT, small, nonstigmatizing
wearable devices for continuous monitoring and detection in outpatient
environments are not yet available. Part of the reason is the complexity of
epilepsy itself, including highly imbalanced data, multimodal nature, and very
subject-specific signatures. However, another problem is the heterogeneity of
methodological approaches in research, leading to slower progress, difficulty
comparing results, and low reproducibility. Therefore, this article identifies
a wide range of methodological decisions that must be made and reported when
training and evaluating the performance of epilepsy detection systems. We
characterize the influence of individual choices using a typical ensemble
random-forest model and the publicly available CHB-MIT database, providing a
broader picture of each decision and giving good-practice recommendations,
based on our experience, where possible.
Related papers
- Optimizing Skin Lesion Classification via Multimodal Data and Auxiliary
Task Integration [54.76511683427566]
This research introduces a novel multimodal method for classifying skin lesions, integrating smartphone-captured images with essential clinical and demographic information.
A distinctive aspect of this method is the integration of an auxiliary task focused on super-resolution image prediction.
The experimental evaluations have been conducted using the PAD-UFES20 dataset, applying various deep-learning architectures.
arXiv Detail & Related papers (2024-02-16T05:16:20Z) - Unbiased Pain Assessment through Wearables and EHR Data: Multi-attribute
Fairness Loss-based CNN Approach [3.799109312082668]
We propose a Multi-attribute Fairness Loss (MAFL) based CNN model to account for any sensitive attributes included in the data.
We compare the proposed model with well-known existing mitigation procedures, and studies reveal that the implemented model performs favorably in contrast to state-of-the-art methods.
arXiv Detail & Related papers (2023-07-03T09:21:36Z) - Benchmarking Heterogeneous Treatment Effect Models through the Lens of
Interpretability [82.29775890542967]
Estimating personalized effects of treatments is a complex, yet pervasive problem.
Recent developments in the machine learning literature on heterogeneous treatment effect estimation gave rise to many sophisticated, but opaque, tools.
We use post-hoc feature importance methods to identify features that influence the model's predictions.
arXiv Detail & Related papers (2022-06-16T17:59:05Z) - NeuralSympCheck: A Symptom Checking and Disease Diagnostic Neural Model
with Logic Regularization [59.15047491202254]
symptom checking systems inquire users for their symptoms and perform a rapid and affordable medical assessment of their condition.
We propose a new approach based on the supervised learning of neural models with logic regularization.
Our experiments show that the proposed approach outperforms the best existing methods in the accuracy of diagnosis when the number of diagnoses and symptoms is large.
arXiv Detail & Related papers (2022-06-02T07:57:17Z) - Exploration of Hyperdimensional Computing Strategies for Enhanced
Learning on Epileptic Seizure Detection [4.538319875483978]
Wearable and unobtrusive monitoring and prediction of epileptic seizures has the potential to significantly increase the life quality of patients.
Standard HD computing is not performing at the level of other state-of-the-art algorithms.
In this paper, we implement different learning strategies and assess their performance on an individual basis.
arXiv Detail & Related papers (2022-01-24T15:48:33Z) - A Novel TSK Fuzzy System Incorporating Multi-view Collaborative Transfer
Learning for Personalized Epileptic EEG Detection [20.11589208667256]
We propose a TSK fuzzy system-based epilepsy detection algorithm that integrates multi-view collaborative transfer learning.
The proposed method has the potential to detect epileptic EEG signals effectively.
arXiv Detail & Related papers (2021-11-11T12:15:55Z) - The Medkit-Learn(ing) Environment: Medical Decision Modelling through
Simulation [81.72197368690031]
We present a new benchmarking suite designed specifically for medical sequential decision making.
The Medkit-Learn(ing) Environment is a publicly available Python package providing simple and easy access to high-fidelity synthetic medical data.
arXiv Detail & Related papers (2021-06-08T10:38:09Z) - Mixture Model Framework for Traumatic Brain Injury Prognosis Using
Heterogeneous Clinical and Outcome Data [3.7363119896212478]
We develop a method for modeling large heterogeneous data types relevant to TBI.
The model is trained on a dataset encompassing a variety of data types, including demographics, blood-based biomarkers, and imaging findings.
It is used to stratify patients into distinct groups in an unsupervised learning setting.
arXiv Detail & Related papers (2020-12-22T19:31:03Z) - Predicting Parkinson's Disease with Multimodal Irregularly Collected
Longitudinal Smartphone Data [75.23250968928578]
Parkinsons Disease is a neurological disorder and prevalent in elderly people.
Traditional ways to diagnose the disease rely on in-person subjective clinical evaluations on the quality of a set of activity tests.
We propose a novel time-series based approach to predicting Parkinson's Disease with raw activity test data collected by smartphones in the wild.
arXiv Detail & Related papers (2020-09-25T01:50:15Z) - Select-ProtoNet: Learning to Select for Few-Shot Disease Subtype
Prediction [55.94378672172967]
We focus on few-shot disease subtype prediction problem, identifying subgroups of similar patients.
We introduce meta learning techniques to develop a new model, which can extract the common experience or knowledge from interrelated clinical tasks.
Our new model is built upon a carefully designed meta-learner, called Prototypical Network, that is a simple yet effective meta learning machine for few-shot image classification.
arXiv Detail & Related papers (2020-09-02T02:50:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.