論文の概要: CQnet: convex-geometric interpretation and constraining neural-network
trajectories
- arxiv url: http://arxiv.org/abs/2302.10895v1
- Date: Thu, 9 Feb 2023 07:38:09 GMT
- ステータス: 処理完了
- システム内更新日: 2023-02-26 13:50:24.288851
- Title: CQnet: convex-geometric interpretation and constraining neural-network
trajectories
- Title(参考訳): CQnet:凸幾何学的解釈と神経ネットワーク軌道の制約
- Authors: Bas Peters
- Abstract要約: 本稿では,凸分割実現可能性問題の解法として,CQアルゴリズムに起源を持つニューラルネットワークCQnetを紹介する。
CQnetは、サンプルまたはデータ固有の学習および決定論的制約に対応する。
最小限の仮定で安定性・非拡張性の証明を提供する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We introduce CQnet, a neural network with origins in the CQ algorithm for
solving convex split-feasibility problems and forward-backward splitting.
CQnet's trajectories are interpretable as particles that are tracking a
changing constraint set via its point-to-set distance function while being
elements of another constraint set at every layer. More than just a
convex-geometric interpretation, CQnet accommodates learned and deterministic
constraints that may be sample or data-specific and are satisfied by every
layer and the output. Furthermore, the states in CQnet progress toward another
constraint set at every layer. We provide proof of stability/nonexpansiveness
with minimal assumptions. The combination of constraint handling and stability
put forward CQnet as a candidate for various tasks where prior knowledge exists
on the network states or output.
- Abstract(参考訳): 我々は,凸分割可能性問題と前方後方分割を解くために,CQアルゴリズムに起源を持つニューラルネットワークCQnetを紹介する。
cqnetの軌道は、各層で他の制約集合の要素でありながら、ポイント・ツー・セット距離関数を介して変化する制約セットを追跡する粒子として解釈できる。
cqnetは単に凸幾何学的解釈以上のもので、サンプルやデータに固有の学習および決定論的制約に対応し、各層と出力によって満足される。
さらに、CQnetの状態は各層に設定された別の制約に向かって進行する。
最小の仮定で安定性/非拡張性の証明を提供する。
制約処理と安定性の組み合わせにより、cqnetはネットワークの状態や出力に事前知識が存在する様々なタスクの候補となった。
関連論文リスト
- LinSATNet: The Positive Linear Satisfiability Neural Networks [116.65291739666303]
本稿では,ニューラルネットワークに人気の高い正の線形満足度を導入する方法について検討する。
本稿では,古典的なシンクホーンアルゴリズムを拡張し,複数の辺分布の集合を共同で符号化する,最初の微分可能満足層を提案する。
論文 参考訳(メタデータ) (2024-07-18T22:05:21Z) - Robust Stochastically-Descending Unrolled Networks [85.6993263983062]
Deep Unrolling(ディープ・アンローリング)は、トレーニング可能なニューラルネットワークの層に切り捨てられた反復アルゴリズムをアンロールする、新たな学習最適化手法である。
アンロールネットワークの収束保証と一般化性は、いまだにオープンな理論上の問題であることを示す。
提案した制約の下で訓練されたアンロールアーキテクチャを2つの異なるアプリケーションで数値的に評価する。
論文 参考訳(メタデータ) (2023-12-25T18:51:23Z) - Semantic Strengthening of Neuro-Symbolic Learning [85.6195120593625]
ニューロシンボリックアプローチは一般に確率論的目的のファジィ近似を利用する。
トラクタブル回路において,これを効率的に計算する方法を示す。
我々は,Warcraftにおける最小コストパスの予測,最小コスト完全マッチングの予測,スドクパズルの解法という3つの課題に対して,アプローチを検証した。
論文 参考訳(メタデータ) (2023-02-28T00:04:22Z) - Fully Stochastic Trust-Region Sequential Quadratic Programming for
Equality-Constrained Optimization Problems [62.83783246648714]
目的と決定論的等式制約による非線形最適化問題を解くために,逐次2次プログラミングアルゴリズム(TR-StoSQP)を提案する。
アルゴリズムは信頼領域半径を適応的に選択し、既存の直線探索StoSQP方式と比較して不確定なヘッセン行列を利用することができる。
論文 参考訳(メタデータ) (2022-11-29T05:52:17Z) - A cusp-capturing PINN for elliptic interface problems [0.0]
ネットワークに付加的な特徴入力としてカスプ強化レベルセット関数を導入し,本質的な解特性を維持する。
提案したニューラルネットワークはメッシュフリーの利点があるため、不規則なドメインでの問題を容易に処理できる。
本研究では,カスプキャプチャ手法の有効性とネットワークモデルの精度を実証するために,一連の数値実験を行った。
論文 参考訳(メタデータ) (2022-10-16T03:05:18Z) - Semantic Probabilistic Layers for Neuro-Symbolic Learning [83.25785999205932]
我々は構造化出力予測(SOP)のための予測層を設計する。
予測が事前に定義されたシンボリック制約のセットと一致していることを保証するため、任意のニューラルネットワークにプラグインすることができる。
我々のセマンティック確率層(SPL)は、構造化された出力空間上で複雑な相関や制約をモデル化することができる。
論文 参考訳(メタデータ) (2022-06-01T12:02:38Z) - Layer Adaptive Node Selection in Bayesian Neural Networks: Statistical
Guarantees and Implementation Details [0.5156484100374059]
スパースディープニューラルネットワークは、大規模研究において予測モデル構築に効率的であることが証明されている。
本稿では,スパイク・アンド・スラブ型ガウス先行法を用いて,訓練中のノード選択を可能にするベイズスパース解を提案する。
本研究は, 先行パラメータのキャラクタリゼーションとともに, 変動的後続一貫性の基本的な結果を確立する。
論文 参考訳(メタデータ) (2021-08-25T00:48:07Z) - Bayesian Nested Neural Networks for Uncertainty Calibration and Adaptive
Compression [40.35734017517066]
ネストネットワーク(Nested Network)またはスリムブルネットワーク(Slimmable Network)は、テスト期間中にアーキテクチャを即座に調整できるニューラルネットワークである。
最近の研究は、トレーニング中に重要なレイヤのノードを順序付けできる"ネストされたドロップアウト"層に焦点を当てている。
論文 参考訳(メタデータ) (2021-01-27T12:34:58Z) - An Integer Linear Programming Framework for Mining Constraints from Data [81.60135973848125]
データから制約をマイニングするための一般的なフレームワークを提案する。
特に、構造化された出力予測の推論を整数線形プログラミング(ILP)問題とみなす。
提案手法は,9×9のスドクパズルの解法を学習し,基礎となるルールを提供することなく,例からツリー問題を最小限に分散させることが可能であることを示す。
論文 参考訳(メタデータ) (2020-06-18T20:09:53Z) - The Curious Case of Convex Neural Networks [12.56278477726461]
完全連結層と畳み込み層の両方に凸性制約を適用可能であることを示す。
a) IOC-NN(Input Output Convex Neural Networks)の自己正規化とオーバーフィッティング(オーバーフィッティング)の問題の低減; (b) 厳しい制約にもかかわらず、ベースマルチレイヤのパーセプトロンを上回り、ベースコンボリューションアーキテクチャと比較して同様のパフォーマンスを実現する。
論文 参考訳(メタデータ) (2020-06-09T08:16:38Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。