論文の概要: A cusp-capturing PINN for elliptic interface problems
- arxiv url: http://arxiv.org/abs/2210.08424v2
- Date: Sun, 16 Apr 2023 14:37:29 GMT
- ステータス: 処理完了
- システム内更新日: 2023-04-18 23:56:44.464478
- Title: A cusp-capturing PINN for elliptic interface problems
- Title(参考訳): 楕円形インタフェース問題に対するカスプキャプチャPINN
- Authors: Yu-Hau Tseng, Te-Sheng Lin, Wei-Fan Hu, Ming-Chih Lai
- Abstract要約: ネットワークに付加的な特徴入力としてカスプ強化レベルセット関数を導入し,本質的な解特性を維持する。
提案したニューラルネットワークはメッシュフリーの利点があるため、不規則なドメインでの問題を容易に処理できる。
本研究では,カスプキャプチャ手法の有効性とネットワークモデルの精度を実証するために,一連の数値実験を行った。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this paper, we propose a cusp-capturing physics-informed neural network
(PINN) to solve discontinuous-coefficient elliptic interface problems whose
solution is continuous but has discontinuous first derivatives on the
interface. To find such a solution using neural network representation, we
introduce a cusp-enforced level set function as an additional feature input to
the network to retain the inherent solution properties; that is, capturing the
solution cusps (where the derivatives are discontinuous) sharply. In addition,
the proposed neural network has the advantage of being mesh-free, so it can
easily handle problems in irregular domains. We train the network using the
physics-informed framework in which the loss function comprises the residual of
the differential equation together with certain interface and boundary
conditions. We conduct a series of numerical experiments to demonstrate the
effectiveness of the cusp-capturing technique and the accuracy of the present
network model. Numerical results show that even using a one-hidden-layer
(shallow) network with a moderate number of neurons and sufficient training
data points, the present network model can achieve prediction accuracy
comparable with traditional methods. Besides, if the solution is discontinuous
across the interface, we can simply incorporate an additional supervised
learning task for solution jump approximation into the present network without
much difficulty.
- Abstract(参考訳): 本稿では,連続的な解を持つがインターフェース上に不連続な第1微分を持つ不連続・係数楕円型インタフェース問題を解決するために,カスプ捕捉型物理インフォームドニューラルネットワーク(PINN)を提案する。
ニューラルネットワーク表現を用いたそのような解を見出すために,本手法では,クスプ強化レベル設定関数をネットワークへの付加機能入力として導入し,固有の解特性を保ちながら,(導体が不連続な)ソリューションcuspを鋭く捕捉する。
さらに、提案するニューラルネットワークはメッシュフリーの利点があるため、不規則なドメインでの問題を容易に処理できる。
損失関数が微分方程式の残差と特定の界面および境界条件を含む物理学的不定形フレームワークを用いてネットワークを訓練する。
本研究では,カスプキャプチャ手法の有効性とネットワークモデルの精度を実証するために,一連の数値実験を行った。
数値的な結果から,ニューロンの適度な数と十分な訓練データポイントを有する一層層(浅層)ネットワークを用いても,従来の手法に匹敵する予測精度が得られた。
さらに,インターフェース全体に不連続な解が存在する場合,既存のネットワークへのソリューションジャンプ近似に,教師付き学習タスクを組み込むだけでよい。
関連論文リスト
- GradINN: Gradient Informed Neural Network [2.287415292857564]
物理情報ニューラルネットワーク(PINN)にヒントを得た手法を提案する。
GradINNは、システムの勾配に関する事前の信念を利用して、予測関数の勾配を全ての入力次元にわたって制限する。
非時間依存システムにまたがる多様な問題に対するGradINNの利点を実証する。
論文 参考訳(メタデータ) (2024-09-03T14:03:29Z) - Semantic Strengthening of Neuro-Symbolic Learning [85.6195120593625]
ニューロシンボリックアプローチは一般に確率論的目的のファジィ近似を利用する。
トラクタブル回路において,これを効率的に計算する方法を示す。
我々は,Warcraftにおける最小コストパスの予測,最小コスト完全マッチングの予測,スドクパズルの解法という3つの課題に対して,アプローチを検証した。
論文 参考訳(メタデータ) (2023-02-28T00:04:22Z) - Mixed formulation of physics-informed neural networks for
thermo-mechanically coupled systems and heterogeneous domains [0.0]
物理インフォームドニューラルネットワーク(PINN)は境界値問題を解決するための新しいツールである。
近年の研究では、多くの工学的問題に対して損失関数を設計する際には、一階微分を使い、強い形式と弱い形式の方程式を組み合わせることにより、はるかに精度が向上することが示されている。
本研究では,多物理問題,特に定常熱力学的に結合した方程式系を解くために混合定式化を適用することを提案する。
論文 参考訳(メタデータ) (2023-02-09T21:56:59Z) - Adaptive Self-supervision Algorithms for Physics-informed Neural
Networks [59.822151945132525]
物理情報ニューラルネットワーク(PINN)は、損失関数のソフト制約として問題領域からの物理的知識を取り入れている。
これらのモデルの訓練性に及ぼす座標点の位置の影響について検討した。
モデルがより高い誤りを犯している領域に対して、より多くのコロケーションポイントを段階的に割り当てる適応的コロケーション方式を提案する。
論文 参考訳(メタデータ) (2022-07-08T18:17:06Z) - Critical Investigation of Failure Modes in Physics-informed Neural
Networks [0.9137554315375919]
合成定式化による物理インフォームドニューラルネットワークは、最適化が難しい非学習損失面を生成することを示す。
また,2つの楕円問題に対する2つのアプローチを,より複雑な目標解を用いて評価する。
論文 参考訳(メタデータ) (2022-06-20T18:43:35Z) - Improved Training of Physics-Informed Neural Networks with Model
Ensembles [81.38804205212425]
我々は、PINNを正しい解に収束させるため、解区間を徐々に拡大することを提案する。
すべてのアンサンブルのメンバーは、観測されたデータの近くで同じ解に収束する。
提案手法は, 得られた解の精度を向上させることができることを示す。
論文 参考訳(メタデータ) (2022-04-11T14:05:34Z) - Mean-field Analysis of Piecewise Linear Solutions for Wide ReLU Networks [83.58049517083138]
勾配勾配勾配を用いた2層ReLUネットワークについて検討する。
SGDは単純な解に偏りがあることが示される。
また,データポイントと異なる場所で結び目が発生するという経験的証拠も提供する。
論文 参考訳(メタデータ) (2021-11-03T15:14:20Z) - A Discontinuity Capturing Shallow Neural Network for Elliptic Interface
Problems [0.0]
連続関数を$d$次元で近似し,楕円型インタフェース問題を解くための不連続キャプチャ・シャローニューラルネットワーク(DCSNN)を開発した。
DCSNNモデルは、トレーニングが必要なパラメータの適度な数だけのために、比較的に効率的である。
論文 参考訳(メタデータ) (2021-06-10T08:40:30Z) - Least-Squares ReLU Neural Network (LSNN) Method For Linear
Advection-Reaction Equation [3.6525914200522656]
本稿では,不連続解を用いた線形対流-反作用問題の解法として,最小二乗ReLUニューラルネットワーク法について検討する。
この方法は、ReLUニューラルネットワークの自由超平面を介して、基礎となる問題の不連続なインターフェースを自動で近似することができる。
論文 参考訳(メタデータ) (2021-05-25T03:13:15Z) - Conditional physics informed neural networks [85.48030573849712]
固有値問題のクラス解を推定するための条件付きPINN(物理情報ニューラルネットワーク)を紹介します。
一つのディープニューラルネットワークが、問題全体に対する偏微分方程式の解を学習できることが示される。
論文 参考訳(メタデータ) (2021-04-06T18:29:14Z) - Modeling from Features: a Mean-field Framework for Over-parameterized
Deep Neural Networks [54.27962244835622]
本稿では、オーバーパラメータ化ディープニューラルネットワーク(DNN)のための新しい平均場フレームワークを提案する。
このフレームワークでは、DNNは連続的な極限におけるその特徴に対する確率測度と関数によって表現される。
本稿では、標準DNNとResidual Network(Res-Net)アーキテクチャを通してフレームワークを説明する。
論文 参考訳(メタデータ) (2020-07-03T01:37:16Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。