論文の概要: Abrupt and spontaneous strategy switches emerge in simple regularised
neural networks
- arxiv url: http://arxiv.org/abs/2302.11351v4
- Date: Fri, 1 Mar 2024 16:54:07 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-05 21:13:31.253664
- Title: Abrupt and spontaneous strategy switches emerge in simple regularised
neural networks
- Title(参考訳): 単純な正規化ニューラルネットワークに突然および自発的な戦略スイッチが出現
- Authors: Anika T. L\"owe, L\'eo Touzo, Paul S. Muhle-Karbe, Andrew M. Saxe,
Christopher Summerfield, Nicolas W. Schuck
- Abstract要約: 単純な人工ニューラルネットワークにおいて、洞察的な振る舞いが生じるかどうかを考察する。
ネットワークアーキテクチャと学習力学の分析により、洞察的な振る舞いは規則化されたゲーティング機構に大きく依存していることが判明した。
このことは、単純なニューラルネットワークにおける漸進的な学習から、洞察のような振る舞いが自然に生じることを示唆している。
- 参考スコア(独自算出の注目度): 8.737068885923348
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Humans sometimes have an insight that leads to a sudden and drastic
performance improvement on the task they are working on. Sudden strategy
adaptations are often linked to insights, considered to be a unique aspect of
human cognition tied to complex processes such as creativity or meta-cognitive
reasoning. Here, we take a learning perspective and ask whether insight-like
behaviour can occur in simple artificial neural networks, even when the models
only learn to form input-output associations through gradual gradient descent.
We compared learning dynamics in humans and regularised neural networks in a
perceptual decision task that included a hidden regularity to solve the task
more efficiently. Our results show that only some humans discover this
regularity, whose behaviour was marked by a sudden and abrupt strategy switch
that reflects an aha-moment. Notably, we find that simple neural networks with
a gradual learning rule and a constant learning rate closely mimicked
behavioural characteristics of human insight-like switches, exhibiting delay of
insight, suddenness and selective occurrence in only some networks. Analyses of
network architectures and learning dynamics revealed that insight-like
behaviour crucially depended on a regularised gating mechanism and noise added
to gradient updates, which allowed the networks to accumulate "silent
knowledge" that is initially suppressed by regularised (attentional) gating.
This suggests that insight-like behaviour can arise naturally from gradual
learning in simple neural networks, where it reflects the combined influences
of noise, gating and regularisation.
- Abstract(参考訳): 人間は時々、彼らが取り組んでいるタスクに対して突然で劇的なパフォーマンス改善をもたらす洞察を持つ。
突然の戦略適応はしばしば洞察と結びついており、創造性やメタ認知的推論のような複雑なプロセスと結びついた人間の認知の独特な側面であると考えられている。
ここでは、モデルが段階的な勾配降下によって入力出力関連を形成することしか学ばない場合であっても、単純な人工ニューラルネットワークで洞察的な振る舞いが生じるかどうかを学習視点で問う。
より効率的に解くために隠れた規則性を含む知覚的決定タスクにおいて、人間と正規化ニューラルネットワークの学習ダイナミクスを比較した。
その結果,アハモーメントを反映した突発的かつ突然の戦略変更を特徴とする,この規則性に気付く人間はごく一部に過ぎなかった。
特に、段階的な学習規則と一定の学習率を持つ単純なニューラルネットワークは、人間の洞察様スイッチの動作特性を密接に模倣しており、いくつかのネットワークでのみ、洞察の遅延、突然性、選択的発生を示す。
ネットワークアーキテクチャと学習ダイナミクスの分析により、洞察的な振る舞いは、規則化されたゲーティング機構と、勾配更新に追加されたノイズに決定的に依存していることが判明した。
これは、単純なニューラルネットワークにおける段階的な学習から、インサイトのような振る舞いが自然に生じ、ノイズ、ゲーティング、正規化の影響を反映することを示唆している。
関連論文リスト
- Life, uh, Finds a Way: Systematic Neural Search [2.163881720692685]
エージェントの動作に迅速に適応して、設定における継続的な問題を解決するという課題に取り組みます。
深層強化学習に焦点をあてる代わりに,探索手順の物理的表現としての視聴行動を提案する。
本稿では,行動実行とグラフの突然変異の間の厳密なフィードバックループを調節することにより,行動の暗黙的な列挙を行うアルゴリズムについて述べる。
論文 参考訳(メタデータ) (2024-10-02T09:06:54Z) - Contrastive-Signal-Dependent Plasticity: Self-Supervised Learning in Spiking Neural Circuits [61.94533459151743]
この研究は、スパイキングネットワークのシナプスを調整するための神経生物学的に動機づけられたスキームを設計することの課題に対処する。
我々の実験シミュレーションは、繰り返しスパイクネットワークを訓練する際、他の生物学的に証明可能なアプローチに対して一貫した優位性を示す。
論文 参考訳(メタデータ) (2023-03-30T02:40:28Z) - Critical Learning Periods for Multisensory Integration in Deep Networks [112.40005682521638]
ニューラルネットワークが様々な情報源からの情報を統合する能力は、トレーニングの初期段階において、適切な相関した信号に晒されることに批判的になることを示す。
臨界周期は、訓練されたシステムとその学習された表現の最終性能を決定づける、複雑で不安定な初期過渡的ダイナミクスから生じることを示す。
論文 参考訳(メタデータ) (2022-10-06T23:50:38Z) - Searching for the Essence of Adversarial Perturbations [73.96215665913797]
本稿では,ニューラルネットワークの誤予測の原因となる,人間の認識可能な情報を含む対人摂動について述べる。
この人間の認識可能な情報の概念は、敵の摂動に関連する重要な特徴を説明できる。
論文 参考訳(メタデータ) (2022-05-30T18:04:57Z) - The world seems different in a social context: a neural network analysis
of human experimental data [57.729312306803955]
本研究では,先行・知覚的信号の精度を変化させることで,個人・社会的タスク設定の両方で人間の行動データを再現可能であることを示す。
トレーニングされたネットワークの神経活性化トレースの分析は、情報が個人や社会的条件のネットワークにおいて、根本的に異なる方法でコード化されていることを示す。
論文 参考訳(メタデータ) (2022-03-03T17:19:12Z) - Data-driven emergence of convolutional structure in neural networks [83.4920717252233]
識別タスクを解くニューラルネットワークが、入力から直接畳み込み構造を学習できることを示す。
データモデルを慎重に設計することにより、このパターンの出現は、入力の非ガウス的、高次局所構造によって引き起こされることを示す。
論文 参考訳(メタデータ) (2022-02-01T17:11:13Z) - Learning to acquire novel cognitive tasks with evolution, plasticity and
meta-meta-learning [3.8073142980733]
メタラーニングでは、ネットワークは外部アルゴリズムでトレーニングされ、タスクの新しいインスタンスごとに予測不可能な情報を取得し、保存し、活用する必要があるタスクを学習する。
ここでは、神経科学モデリングフレームワークに基づく単純なメタ学習タスクのセットで、プラスティック接続を備えたニューラルネットワークを進化させます。
進化したネットワークは、進化した神経組織と塑性構造を自発的に操作することで、トレーニング中に見ることのない、新しい単純な認知タスクを自動的に取得することができる。
論文 参考訳(メタデータ) (2021-12-16T03:18:01Z) - Gradient Starvation: A Learning Proclivity in Neural Networks [97.02382916372594]
グラディエント・スターベーションは、タスクに関連する機能のサブセットのみをキャプチャすることで、クロスエントロピー損失を最小化するときに発生する。
この研究は、ニューラルネットワークにおけるそのような特徴不均衡の出現に関する理論的説明を提供する。
論文 参考訳(メタデータ) (2020-11-18T18:52:08Z) - Relationship between manifold smoothness and adversarial vulnerability
in deep learning with local errors [2.7834038784275403]
ニューラルネットワークにおける敵の脆弱性の起源について検討する。
本研究は,隠れ表現の固有スペクトルの比較的高速なパワーロー崩壊を必要とすることを明らかにする。
論文 参考訳(メタデータ) (2020-07-04T08:47:51Z) - Adaptive Reinforcement Learning through Evolving Self-Modifying Neural
Networks [0.0]
強化学習(RL)の現在の手法は、特定の時間間隔で反射した後にのみ新しい相互作用に適応する。
最近の研究は、バックプロパゲーションを用いて訓練された単純なRLタスクの性能を向上させるために、ニューラルネットワークに神経修飾塑性を付与することでこの問題に対処している。
ここでは,四足歩行におけるメタラーニングの課題について検討する。
その結果、自己修飾プラスチックネットワークを用いて進化したエージェントは、複雑なメタ学習タスクに適応し、グラデーションを使って更新された同じネットワークよりも優れていることが示される。
論文 参考訳(メタデータ) (2020-05-22T02:24:44Z) - How Do You Act? An Empirical Study to Understand Behavior of Deep
Reinforcement Learning Agents [2.3268634502937937]
深層強化学習エージェントの意思決定プロセスの透明性向上への需要はこれまで以上に大きい。
本研究では,エージェントのポリシーネットワークの活性化空間を通じて学習した表現を特徴付ける。
本研究は,ネットワークの層活性化と実行動作の相関パターンを特徴とする健康エージェントの挙動を示す。
論文 参考訳(メタデータ) (2020-04-07T10:08:55Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。