論文の概要: Differentiable Rotamer Sampling with Molecular Force Fields
- arxiv url: http://arxiv.org/abs/2302.11430v1
- Date: Wed, 22 Feb 2023 15:12:28 GMT
- ステータス: 処理完了
- システム内更新日: 2023-02-23 14:56:22.761473
- Title: Differentiable Rotamer Sampling with Molecular Force Fields
- Title(参考訳): 分子力場を用いた微分可能なロタマーサンプリング
- Authors: Congzhou M. Sha, Jian Wang, Nikolay V. Dokholyan
- Abstract要約: ボルツマン発生器は分子動力学の代替として提案されている。
ボルツマン生成法は, 従来のMDを複素高分子に置き換えるには十分迅速であることを示す。
ニューラルネットワークを用いた分子エネルギー景観探索のための包括的なツールキットを提供する。
- 参考スコア(独自算出の注目度): 4.081926213322809
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Molecular dynamics is the primary computational method by which modern
structural biology explores macromolecule structure and function. Boltzmann
generators have been proposed as an alternative to molecular dynamics, by
replacing the integration of molecular systems over time with the training of
generative neural networks. This neural network approach to MD samples rare
events at a higher rate than traditional MD, however critical gaps in the
theory and computational feasibility of Boltzmann generators significantly
reduce their usability. Here, we develop a mathematical foundation to overcome
these barriers; we demonstrate that the Boltzmann generator approach is
sufficiently rapid to replace traditional MD for complex macromolecules, such
as proteins in specific applications, and we provide a comprehensive toolkit
for the exploration of molecular energy landscapes with neural networks.
- Abstract(参考訳): 分子動力学は、現代の構造生物学がマクロ分子の構造と機能を探究する主要な計算方法である。
ボルツマン生成器は分子力学の代替として提案されており、時間をかけて分子系の統合を生成ニューラルネットワークの訓練に置き換えている。
このmdへのニューラルネットワークアプローチは、従来のmdよりも高い速度でレアイベントをサンプリングするが、ボルツマン生成器の理論と計算可能性における重要なギャップは、その使用性を大幅に低下させる。
そこで我々は,これらの障壁を克服する数学的基盤を構築し,Boltzmannジェネレータアプローチが,特定の応用におけるタンパク質などの複雑な高分子に対する従来のMDを置き換えるのに十分迅速であることを示し,ニューラルネットワークを用いた分子エネルギー景観の探索のための包括的なツールキットを提供する。
関連論文リスト
- Pre-trained Molecular Language Models with Random Functional Group Masking [54.900360309677794]
SMILESをベースとしたアンダーリネム分子アンダーリネム言語アンダーリネムモデルを提案し,特定の分子原子に対応するSMILESサブシーケンスをランダムにマスキングする。
この技術は、モデルに分子構造や特性をよりよく推測させ、予測能力を高めることを目的としている。
論文 参考訳(メタデータ) (2024-11-03T01:56:15Z) - Active learning of Boltzmann samplers and potential energies with quantum mechanical accuracy [1.7633275579210346]
我々は,強化サンプリングと深層生成モデルを組み合わせるアプローチと,機械学習ポテンシャルの能動的学習を併用したアプローチを開発する。
本手法を用いて, 医療・生物学分野における多種多様なシステム群に属する超小型の銀ナノクラスターの異性化について検討する。
論文 参考訳(メタデータ) (2024-01-29T19:01:31Z) - Machine-learned molecular mechanics force field for the simulation of
protein-ligand systems and beyond [33.54862439531144]
生体分子シミュレーションとコンピュータ支援薬物設計には, 信頼性および分子力学(MM)力場の開発が不可欠である。
本稿では、一般化された機械学習型MM力場、ttexttespaloma-0.3、およびグラフニューラルネットワークを用いたエンドツーエンドの微分可能なフレームワークを紹介する。
力場は、小さな分子、ペプチド、核酸を含む薬物発見に非常に関係した化学ドメインの量子化学エネルギー特性を再現する。
論文 参考訳(メタデータ) (2023-07-13T23:00:22Z) - Molecule Design by Latent Space Energy-Based Modeling and Gradual
Distribution Shifting [53.44684898432997]
化学的・生物学的性質が望ましい分子の生成は、薬物発見にとって重要である。
本稿では,分子の結合分布とその特性を捉える確率的生成モデルを提案する。
本手法は種々の分子設計タスクにおいて非常に強力な性能を発揮する。
論文 参考訳(メタデータ) (2023-06-09T03:04:21Z) - Towards Predicting Equilibrium Distributions for Molecular Systems with
Deep Learning [60.02391969049972]
本稿では,分子系の平衡分布を予測するために,分散グラフマー(DiG)と呼ばれる新しいディープラーニングフレームワークを導入する。
DiGはディープニューラルネットワークを用いて分子系の記述子に条件付き平衡分布に単純な分布を変換する。
論文 参考訳(メタデータ) (2023-06-08T17:12:08Z) - Learning Harmonic Molecular Representations on Riemannian Manifold [18.49126496517951]
分子表現学習は、AIによる薬物発見研究において重要な役割を担っている。
本研究では,その分子表面のラプラス・ベルトラミ固有関数を用いた分子を表現する高調波分子表現学習フレームワークを提案する。
論文 参考訳(メタデータ) (2023-03-27T18:02:47Z) - MolCPT: Molecule Continuous Prompt Tuning to Generalize Molecular
Representation Learning [77.31492888819935]
分子表現学習のための「プリトレイン,プロンプト,ファインチューン」という新しいパラダイム,分子連続プロンプトチューニング(MolCPT)を提案する。
MolCPTは、事前訓練されたモデルを使用して、スタンドアロンの入力を表現的なプロンプトに投影するモチーフプロンプト関数を定義する。
いくつかのベンチマークデータセットの実験により、MollCPTは分子特性予測のために学習済みのGNNを効率的に一般化することが示された。
論文 参考訳(メタデータ) (2022-12-20T19:32:30Z) - Exploring Chemical Space with Score-based Out-of-distribution Generation [57.15855198512551]
生成微分方程式(SDE)にアウト・オブ・ディストリビューション制御を組み込んだスコアベース拡散方式を提案する。
いくつかの新しい分子は現実世界の薬物の基本的な要件を満たしていないため、MOODは特性予測器からの勾配を利用して条件付き生成を行う。
我々はMOODがトレーニング分布を超えて化学空間を探索できることを実験的に検証し、既存の方法で見いだされた分子、そして元のトレーニングプールの上位0.01%までも生成できることを実証した。
論文 参考訳(メタデータ) (2022-06-06T06:17:11Z) - Accurate Machine Learned Quantum-Mechanical Force Fields for
Biomolecular Simulations [51.68332623405432]
分子動力学(MD)シミュレーションは、化学的および生物学的プロセスに関する原子論的な洞察を可能にする。
近年,MDシミュレーションの代替手段として機械学習力場(MLFF)が出現している。
本研究は、大規模分子シミュレーションのための正確なMLFFを構築するための一般的なアプローチを提案する。
論文 参考訳(メタデータ) (2022-05-17T13:08:28Z) - Generative Enriched Sequential Learning (ESL) Approach for Molecular
Design via Augmented Domain Knowledge [1.4410716345002657]
生成機械学習技術は、分子指紋表現に基づく新しい化学構造を生成することができる。
教師付きドメイン知識の欠如は、学習手順がトレーニングデータに見られる一般的な分子に相対的に偏っていることを誤解させる可能性がある。
この欠点は、例えば薬物類似度スコア(QED)の定量的推定など、ドメイン知識でトレーニングデータを増強することで軽減した。
論文 参考訳(メタデータ) (2022-04-05T20:16:11Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。