Evaluating explainability for machine learning predictions using
model-agnostic metrics
- URL: http://arxiv.org/abs/2302.12094v2
- Date: Mon, 29 Jan 2024 18:56:08 GMT
- Title: Evaluating explainability for machine learning predictions using
model-agnostic metrics
- Authors: Cristian Munoz, Kleyton da Costa, Bernardo Modenesi, Adriano Koshiyama
- Abstract summary: We present novel metrics to quantify the degree of which AI model predictions can be easily explainable by its features.
Our metrics summarize different aspects of explainability into scalars, providing a more comprehensive understanding of model predictions.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Rapid advancements in artificial intelligence (AI) technology have brought
about a plethora of new challenges in terms of governance and regulation. AI
systems are being integrated into various industries and sectors, creating a
demand from decision-makers to possess a comprehensive and nuanced
understanding of the capabilities and limitations of these systems. One
critical aspect of this demand is the ability to explain the results of machine
learning models, which is crucial to promoting transparency and trust in AI
systems, as well as fundamental in helping machine learning models to be
trained ethically. In this paper, we present novel metrics to quantify the
degree of which AI model predictions can be easily explainable by its features.
Our metrics summarize different aspects of explainability into scalars,
providing a more comprehensive understanding of model predictions and
facilitating communication between decision-makers and stakeholders, thereby
increasing the overall transparency and accountability of AI systems.
Related papers
- Internal Causal Mechanisms Robustly Predict Language Model Out-of-Distribution Behaviors [61.92704516732144]
We show that the most robust features for correctness prediction are those that play a distinctive causal role in the model's behavior.<n>We propose two methods that leverage causal mechanisms to predict the correctness of model outputs.
arXiv Detail & Related papers (2025-05-17T00:31:39Z) - Learning to Generate and Evaluate Fact-checking Explanations with Transformers [10.970249299147866]
Research contributes to the field of Explainable Artificial Antelligence (XAI)
We develop transformer-based fact-checking models that contextualise and justify their decisions by generating human-accessible explanations.
We emphasise the need for aligning Artificial Intelligence (AI)-generated explanations with human judgements.
arXiv Detail & Related papers (2024-10-21T06:22:51Z) - Benchmarks as Microscopes: A Call for Model Metrology [76.64402390208576]
Modern language models (LMs) pose a new challenge in capability assessment.
To be confident in our metrics, we need a new discipline of model metrology.
arXiv Detail & Related papers (2024-07-22T17:52:12Z) - A General Approach for Determining Applicability Domain of Machine Learning Models [1.8551396341435895]
Knowledge of the domain of applicability of a machine learning model is essential to ensuring accurate and reliable model predictions.
We develop a new and general approach of assessing model domain using kernel density estimation.
We show that chemical groups considered unrelated based on chemical knowledge exhibit significant dissimilarities by our measure.
arXiv Detail & Related papers (2024-05-28T15:41:16Z) - QualEval: Qualitative Evaluation for Model Improvement [82.73561470966658]
We propose QualEval, which augments quantitative scalar metrics with automated qualitative evaluation as a vehicle for model improvement.
QualEval uses a powerful LLM reasoner and our novel flexible linear programming solver to generate human-readable insights.
We demonstrate that leveraging its insights, for example, improves the absolute performance of the Llama 2 model by up to 15% points relative.
arXiv Detail & Related papers (2023-11-06T00:21:44Z) - LaPLACE: Probabilistic Local Model-Agnostic Causal Explanations [1.0370398945228227]
We introduce LaPLACE-explainer, designed to provide probabilistic cause-and-effect explanations for machine learning models.
The LaPLACE-Explainer component leverages the concept of a Markov blanket to establish statistical boundaries between relevant and non-relevant features.
Our approach offers causal explanations and outperforms LIME and SHAP in terms of local accuracy and consistency of explained features.
arXiv Detail & Related papers (2023-10-01T04:09:59Z) - survex: an R package for explaining machine learning survival models [8.028581359682239]
We introduce the survex R package, which provides a framework for explaining any survival model by applying artificial intelligence techniques.
The capabilities of the proposed software encompass understanding and diagnosing survival models, which can lead to their improvement.
arXiv Detail & Related papers (2023-08-30T16:14:20Z) - Metric Tools for Sensitivity Analysis with Applications to Neural
Networks [0.0]
Explainable Artificial Intelligence (XAI) aims to provide interpretations for predictions made by Machine Learning models.
In this paper, a theoretical framework is proposed to study sensitivities of ML models using metric techniques.
A complete family of new quantitative metrics called $alpha$-curves is extracted.
arXiv Detail & Related papers (2023-05-03T18:10:21Z) - ComplAI: Theory of A Unified Framework for Multi-factor Assessment of
Black-Box Supervised Machine Learning Models [6.279863832853343]
ComplAI is a unique framework to enable, observe, analyze and quantify explainability, robustness, performance, fairness, and model behavior.
It evaluates different supervised Machine Learning models not just from their ability to make correct predictions but from overall responsibility perspective.
arXiv Detail & Related papers (2022-12-30T08:48:19Z) - VCNet: A self-explaining model for realistic counterfactual generation [52.77024349608834]
Counterfactual explanation is a class of methods to make local explanations of machine learning decisions.
We present VCNet-Variational Counter Net, a model architecture that combines a predictor and a counterfactual generator.
We show that VCNet is able to both generate predictions, and to generate counterfactual explanations without having to solve another minimisation problem.
arXiv Detail & Related papers (2022-12-21T08:45:32Z) - Exploring the Trade-off between Plausibility, Change Intensity and
Adversarial Power in Counterfactual Explanations using Multi-objective
Optimization [73.89239820192894]
We argue that automated counterfactual generation should regard several aspects of the produced adversarial instances.
We present a novel framework for the generation of counterfactual examples.
arXiv Detail & Related papers (2022-05-20T15:02:53Z) - Counterfactual Explanations as Interventions in Latent Space [62.997667081978825]
Counterfactual explanations aim to provide to end users a set of features that need to be changed in order to achieve a desired outcome.
Current approaches rarely take into account the feasibility of actions needed to achieve the proposed explanations.
We present Counterfactual Explanations as Interventions in Latent Space (CEILS), a methodology to generate counterfactual explanations.
arXiv Detail & Related papers (2021-06-14T20:48:48Z) - Beyond Trivial Counterfactual Explanations with Diverse Valuable
Explanations [64.85696493596821]
In computer vision applications, generative counterfactual methods indicate how to perturb a model's input to change its prediction.
We propose a counterfactual method that learns a perturbation in a disentangled latent space that is constrained using a diversity-enforcing loss.
Our model improves the success rate of producing high-quality valuable explanations when compared to previous state-of-the-art methods.
arXiv Detail & Related papers (2021-03-18T12:57:34Z) - Introduction to Rare-Event Predictive Modeling for Inferential
Statisticians -- A Hands-On Application in the Prediction of Breakthrough
Patents [0.0]
We introduce a machine learning (ML) approach to quantitative analysis geared towards optimizing the predictive performance.
We discuss the potential synergies between the two fields against the backdrop of this, at first glance, target-incompatibility.
We are providing a hands-on predictive modeling introduction for a quantitative social science audience while aiming at demystifying computer science jargon.
arXiv Detail & Related papers (2020-03-30T13:06:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.