論文の概要: A Targeted Accuracy Diagnostic for Variational Approximations
- arxiv url: http://arxiv.org/abs/2302.12419v1
- Date: Fri, 24 Feb 2023 02:50:18 GMT
- ステータス: 処理完了
- システム内更新日: 2023-02-27 14:40:23.591368
- Title: A Targeted Accuracy Diagnostic for Variational Approximations
- Title(参考訳): 変分近似のための目標精度診断
- Authors: Yu Wang, Miko{\l}aj Kasprzak, Jonathan H. Huggins
- Abstract要約: 変分推論(VI)はマルコフ・チェイン・モンテカルロ(MCMC)の魅力的な代替品である
既存の方法は、全変分分布の品質を特徴付ける。
配電近似精度(TADDAA)のためのTArgeted診断法を提案する。
- 参考スコア(独自算出の注目度): 8.969208467611896
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Variational Inference (VI) is an attractive alternative to Markov Chain Monte
Carlo (MCMC) due to its computational efficiency in the case of large datasets
and/or complex models with high-dimensional parameters. However, evaluating the
accuracy of variational approximations remains a challenge. Existing methods
characterize the quality of the whole variational distribution, which is almost
always poor in realistic applications, even if specific posterior functionals
such as the component-wise means or variances are accurate. Hence, these
diagnostics are of practical value only in limited circumstances. To address
this issue, we propose the TArgeted Diagnostic for Distribution Approximation
Accuracy (TADDAA), which uses many short parallel MCMC chains to obtain lower
bounds on the error of each posterior functional of interest. We also develop a
reliability check for TADDAA to determine when the lower bounds should not be
trusted. Numerical experiments validate the practical utility and computational
efficiency of our approach on a range of synthetic distributions and real-data
examples, including sparse logistic regression and Bayesian neural network
models.
- Abstract(参考訳): 変分推論 (VI) はマルコフ・チェイン・モンテカルロ (MCMC) の代用として、大規模データセットや高次元パラメータを持つ複素モデルの場合の計算効率が優れている。
しかし,変分近似の精度評価は依然として課題である。
既存の手法では、コンポーネントワイド手段や分散のような特定の後続関数が正確であっても、ほとんど常に現実的な応用では不十分な、変動分布全体の品質を特徴付ける。
したがって、これらの診断は限られた状況でのみ実用上有用である。
この問題に対処するために,多くの短並列MCMCチェーンを用いて,各後続関数の誤差の下位境界を求めるTADDAA(TArgeted Diagnostic for Distribution Approximation Accuracy)を提案する。
また, TADDAAの信頼性チェックを開発し, 下位境界が信頼できないかどうかを判定する。
数値実験により,分散ロジスティック回帰やベイズニューラルネットワークモデルなど,多種多様な合成分布と実データ例に対する本手法の実用的有用性と計算効率が検証された。
関連論文リスト
- Distributionally Robust Optimization as a Scalable Framework to Characterize Extreme Value Distributions [22.765095010254118]
本研究の目的は分散ロバストな最適化 (DRO) 推定器の開発であり、特に多次元極値理論 (EVT) の統計量についてである。
点過程の空間における半パラメトリックな最大安定制約によって予測されるDRO推定器について検討した。
両手法は, 合成データを用いて検証し, 所定の特性を回復し, 提案手法の有効性を検証する。
論文 参考訳(メタデータ) (2024-07-31T19:45:27Z) - Variational Bayesian surrogate modelling with application to robust design optimisation [0.9626666671366836]
サロゲートモデルは複雑な計算モデルに対して素早く評価できる近似を提供する。
入力の不確かさと次元減少を伴う統計的代理を構築するためのベイズ推定について考察する。
コスト関数がモデル出力の平均および標準偏差の重み付け和に依存するような本質的で頑健な構造最適化問題を示す。
論文 参考訳(メタデータ) (2024-04-23T09:22:35Z) - Conditional expectation with regularization for missing data imputation [19.254291863337347]
欠落したデータは、医学、スポーツ、ファイナンスなど、さまざまな領域のデータセットで頻繁に発生する。
正規化による損失値の条件分布に基づくインプット(DIMV)という新しいアルゴリズムを提案する。
DIMVは、完全に観察された特徴からの情報をベースとして、エントリが不足している特徴の条件分布を決定することで機能する。
論文 参考訳(メタデータ) (2023-02-02T06:59:15Z) - Faithful Heteroscedastic Regression with Neural Networks [2.2835610890984164]
パラメータマップにニューラルネットワークを使用するパラメトリックメソッドは、データ内の複雑な関係をキャプチャすることができる。
ヘテロスセダティックなモデルを生成するために最適化に2つの簡単な修正を加え、ホモスセダティックなモデルとほぼ同等の精度で推定する。
提案手法は,等しくフレキシブルな平均値のみのモデルの精度を維持しつつ,クラスごとの分散キャリブレーションも提供する。
論文 参考訳(メタデータ) (2022-12-18T22:34:42Z) - Leveraging Unlabeled Data to Predict Out-of-Distribution Performance [63.740181251997306]
実世界の機械学習デプロイメントは、ソース(トレーニング)とターゲット(テスト)ディストリビューションのミスマッチによって特徴づけられる。
本研究では,ラベル付きソースデータとラベルなしターゲットデータのみを用いて,対象領域の精度を予測する手法を検討する。
本稿では,モデルの信頼度をしきい値として学習し,精度をラベルなし例のごく一部として予測する実践的手法である平均閾値保持信頼度(ATC)を提案する。
論文 参考訳(メタデータ) (2022-01-11T23:01:12Z) - Meta Learning Low Rank Covariance Factors for Energy-Based Deterministic
Uncertainty [58.144520501201995]
ニューラルネットワーク層のBi-Lipschitz正規化は、各レイヤの特徴空間におけるデータインスタンス間の相対距離を保存する。
注意セットエンコーダを用いて,タスク固有の共分散行列を効率的に構築するために,対角的,対角的,低ランクな要素のメタ学習を提案する。
また,最終的な予測分布を達成するために,スケールしたエネルギーを利用する推論手法を提案する。
論文 参考訳(メタデータ) (2021-10-12T22:04:19Z) - Scalable Marginal Likelihood Estimation for Model Selection in Deep
Learning [78.83598532168256]
階層型モデル選択は、推定困難のため、ディープラーニングではほとんど使われない。
本研究は,検証データが利用できない場合,限界的可能性によって一般化が向上し,有用であることを示す。
論文 参考訳(メタデータ) (2021-04-11T09:50:24Z) - Amortized Conditional Normalized Maximum Likelihood: Reliable Out of
Distribution Uncertainty Estimation [99.92568326314667]
本研究では,不確実性推定のための拡張性のある汎用的アプローチとして,償却条件正規化最大値(ACNML)法を提案する。
提案アルゴリズムは条件付き正規化最大度(CNML)符号化方式に基づいており、最小記述長の原理に従って最小値の最適特性を持つ。
我々は、ACNMLが、分布外入力のキャリブレーションの観点から、不確実性推定のための多くの手法と好意的に比較することを示した。
論文 参考訳(メタデータ) (2020-11-05T08:04:34Z) - Unlabelled Data Improves Bayesian Uncertainty Calibration under
Covariate Shift [100.52588638477862]
後続正則化に基づく近似ベイズ推定法を開発した。
前立腺癌の予後モデルを世界規模で導入する上で,本手法の有用性を実証する。
論文 参考訳(メタデータ) (2020-06-26T13:50:19Z) - Good Classifiers are Abundant in the Interpolating Regime [64.72044662855612]
補間分類器間のテストエラーの完全な分布を正確に計算する手法を開発した。
テストエラーは、最悪の補間モデルのテストエラーから大きく逸脱する、小さな典型的な$varepsilon*$に集中する傾向にある。
以上の結果から,統計的学習理論における通常の解析手法は,実際に観測された優れた一般化性能を捉えるのに十分な粒度にはならない可能性が示唆された。
論文 参考訳(メタデータ) (2020-06-22T21:12:31Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。